¥Þ¥Æ¥ê¥¢¥ë¥º¡¦¥¤¥ó¥Õ¥©¥Þ¥Æ¥£¥¯¥¹´ØÏ¢¾ðÊó [Áí¹çº÷ °ú][Top]

¥Þ¥Æ¥ê¥¢¥ë¥º¡¦¥¤¥ó¥Õ¥©¥Þ¥Æ¥£¥¯¥¹(MI)´ØÏ¢¾ðÊ󡣳ƾðÊó¤ÎÃæ¤Ë¤ÏŪ³Î¤Ç¤Ê¤¤¡¢´Ö°ã¤¤¤ä¸í¤Ã¤¿µ­½Ò¤¬¤¢¤ë¤«¤â¤·¤ì¤Þ¤»¤ó¡£¤´Ãí°Õ²¼¤µ¤¤¡Ê¢ªÃøºî¸¢¤½¤Î¾¤Î½ôÃí°Õ¡¢ÌÈÀÕÀâÌÀ[¥Ú¡¼¥¸]¡Ë¡£¡Ê¥á¥¤¥ë¤Ç¤Î¸æ»ØÅ¦Âç´¿·Þ¤Ç¤¹¡Ë
Materials Informatics
Materials Informatics¡¢¥Þ¥Æ¥ê¥¢¥ë¥º¡¦¥¤¥ó¥Õ¥©¥Þ¥Æ¥£¥¯¥¹¡§»²¹Í¥Ú¡¼¥¸[1]Materials Project¡¢[2]Materials Evolution¡Ê¥¢¥¯¥»¥¹ÉÔǽ¡Ë¡¢[3]AFLOWLIB.ORG: a distributed materials genome properties repository from high-throughput ab-initio calculation.¡¢[4]Center for Inverse Design(*) ¡¢[5]Center for Hierarchical Materials Design(*)(ChiMaD)¡¢[6]¥¹¥Ñ¡¼¥¹¥â¥Ç¥ê¥ó¥°¤Î¿¼²½¤È¹â¼¡¸µ¥Ç¡¼¥¿¶îư²Ê³Ø¤ÎÁÏÀ®¡Êʸ²Ê¾Ê²Ê¸¦Èñ¡Ö¿·³Ø½ÑÎΰ踦µæ¡×¡Ë[7]NoMaD(Novel Materials Discovery Repository)[8]Åý¹ç·¿ºàÎÁ³«È¯¡¦¾ðÊó´ðÈ×ÉôÌç(MaDIS)¡Ú´ØÏ¢¸ì¡ÛInverse materials design, Materials genome, Data mining, Data mapping, Big Data, Database¡¢¥Ó¥Ã¥°¥Ç¡¼¥¿¡¢¥Ç¡¼¥¿¥Ù¡¼¥¹¡¢µ¡³£³Ø½¬¡¢½Å²óµ¢Ê¬ÀÏ¡¢Â¿ÊÑÎ̲òÀÏ¡¢¥¨¥­¥¹¥Ñ¡¼¥È¥·¥¹¥Æ¥à¡¢²Ä»ë²½

¥Þ¥Æ¥ê¥¢¥ë¥º¡¦¥¤¥ó¥Õ¥©¥Þ¥Æ¥£¥¯¥¹[ÀèÆ¬]


[NIMS´ØÏ¢¥×¥ì¥¹¥ê¥ê¡¼¥¹¾ðÊó¡Ê´Þ¤à"NIMS NOW"¡Ë][¾®Ìܼ¡]
[17]¡ÖArtificial Intelligence Learns to Predict Photo-Functional Molecules¡×¡¢¾ÜºÙ¤ÏNIMS-MANA¤ÎResearch Highlights(Vol. 45)»²¾È¡£
[18]¡ÖNew Material That is Both a Thermoelectric and a Superconductor Identified by High-Throughput Materials Discovery¡×¡¢¾ÜºÙ¤ÏNIMS-MANA¤ÎResearch Highlights(Vol. 46)»²¾È¡£
[19]¡Öµ¡³£³Ø½¬¤Ë¤è¤êÀ¤³¦ºÇ¹â¥¯¥é¥¹¤ÎÇ®Êü¼Í¿ÁØËì¤òÀ߷פ·¡¢¤½¤Î¼Â¾Ú¤ËÀ®¸ù ¡Á Ìó80²¯¤Î¸õÊ䤫¤éºÇŬ¹½Â¤¤òõº÷¡¡¾Ê¥¨¥Í¥ë¥®¡¼¼Ò²ñ¤Ø¤Î¹×¸¥¤Ë´üÂÔ ¡Á¡×¡¢¾ÜºÙ¤ÏNIMS¤Î¥×¥ì¥¹¥ê¥ê¡¼¥¹»²¾È¡£
[20]¡Öµ¡³£²ÄÆÉÀ­¤ò¹â¤á¤ë·×¬¥Ç¡¼¥¿¤Î¥á¥¿¾ðÊóÃê½Ð¥Ä¡¼¥ë(M-DaC)¤Î³«È¯¤È°ìÈÌÄó¶¡ ¡ÁÁõÃÖ¤ä¥á¡¼¥«¡¼¤Ç°Û¤Ê¤ë¥Ç¡¼¥¿·Á¼°¤òÅý°ì ¥Ç¡¼¥¿²Ê³Ø¤Ë¤è¤ë¿·ºàÎÁ³«È¯¤ÎÂ¥¿Ê¤Ë´üÂÔ ¡Á¡×¡¢¾ÜºÙ¤ÏNIMS¤Î¥×¥ì¥¹¥ê¥ê¡¼¥¹»²¾È¡£
[21]¡Öµ¡³£³Ø½¬¤Î¡Öµ­²±¡×¤ò³èÍѤ·¡¢¹âʬ»Ò¤ÎÇ®ÅÁƳÀ­¤ÎÂçÉý¤Ê¸þ¾å¤ËÀ®¸ù ¡Á¾¯¤Ê¤¤¥Ç¡¼¥¿¤Ç¤â¹âÀºÅÙ¤Êͽ¬¤¬²Äǽ¤Ë ¹âʬ»Ò¤Ç¤ÎºàÎÁ¥¤¥ó¥Õ¥©¥Þ¥Æ¥£¥¯¥¹²Ã®¤Ë´üÂÔ¡Á¡×¡¢¾ÜºÙ¤ÏNIMS¤Î¥×¥ì¥¹¥ê¥ê¡¼¥¹»²¾È¡£
[22]¡ÖʪÀ­Í½Â¬¥¿¥¹¥¯·±ÎýºÑ¤ß¥â¥Ç¥ë¤ÎÊñ³çۥ饤¥Ö¥é¥êXenonPy.MDL¤ò¸ø³« ¡Áž°Ü³Ø½¬¤ÇºàÎÁ¥¤¥ó¥Õ¥©¥Þ¥Æ¥£¥¯¥¹¤Î¥¹¥â¡¼¥ë¥Ç¡¼¥¿¤ÎÊɤò¾è¤ê±Û¤¨¤ë¡Á¡×¡¢¾ÜºÙ¤ÏNIMS¤Î¥×¥ì¥¹¥ê¥ê¡¼¥¹»²¾È¡£
[23]¡Öµ¡³£³Ø½¬¤Ë¤è¤ê·ë¾½Î³³¦¤ÎÇ®ÅÁƳÅÙ¤ò¶É½ê¸¶»ÒÇÛÎ󤫤é¹âÀºÅÙ¤Ëͽ¬ ¡Á·×»»²Ê³Ø¤È㳦¥Ê¥Î¹½Â¤¤Ë´ð¤Å¤¯¿·¤¿¤ÊºàÎÁ³«È¯»Ø¿Ë¡Á¡×¡¢¾ÜºÙ¤ÏNIMS¤Î¥×¥ì¥¹¥ê¥ê¡¼¥¹»²¾È¡£
[24]¡Ö¡ÖÎã³°¡×¤òȯ¸«¤¹¤ëAI¡ÖBLOX¡×¤Î³«È¯ - AI¤òÍѤ¤¤¿³×¿·ºàÎÁ¤Î³«È¯¤Ë¿·¤¿¤ÊÆ»¶Ú - ¡×¡¢¾ÜºÙ¤ÏNIMS¤Î¥×¥ì¥¹¥ê¥ê¡¼¥¹»²¾È¡£
[25]¡ÖºàÎÁ¥Ç¡¼¥¿¤ÎÍø³èÍѤ˹׸¥¤¹¤ë¡ÖMaterials Data Repository (MDR)¡×¤ÈNIMS¤¬È¯¿®¤¹¤ëºàÎÁ¥Ç¡¼¥¿¥×¥é¥Ã¥È¥Õ¥©¡¼¥àDICE (¥À¥¤¥¹)¤ÎWeb¥µ¥¤¥È¤Î¸ø³« ¡ÁºàÎÁ¥Ç¡¼¥¿¤Î¼ý½¸¡¦ÃßÀÑ¡¦¸ø³«¡¢¥Ç¡¼¥¿¶îư·¿¸¦µæ¤ÎÂ¥¿Ê¤Ø¸þ¤±¤Æ¡Á¡×¡¢¾ÜºÙ¤ÏNIMS¤Î¥Ë¥å¡¼¥¹µ­»ö»²¾È¡£
[26]¡Öµ¡³£³Ø½¬¤Ë¤è¤êÇöËìºîÀ½¥×¥í¥»¥¹¤Î¹â®²½¤ò¼Â¸½ ¡Á³°Éô¥Ç¡¼¥¿¤Ê¤·¤Ç»îÎÁºîÀ½²ó¿ô¤òÂçÉý¤ËÄ㸺¡¢ºàÎÁ³«È¯¥³¥¹¥Èºï¸º¤Ë´üÂÔ¡Á¡×¡¢¾ÜºÙ¤ÏNIMS¤Î¥×¥ì¥¹¥ê¥ê¡¼¥¹»²¾È¡£
[27]¡Öµ¡³£³Ø½¬¤Ë¤è¤ê͹ç¶âÊ´Ëö¤ÎÀ½Â¤¥³¥¹¥Èºï¸º¤ËÀ®¸ù ¡Á¿ô²ó¤Î»î¹Ô¤ÇÊ£»¨¤ÊÀ½Â¤¾ò·ï¤òºÇŬ²½¡¡¹Ò¶õµ¡¥¨¥ó¥¸¥óÉôÉÊÀ½Â¤¤ÎÄ㥳¥¹¥È²½¤Ë´üÂÔ¡Á¡×¡¢¾ÜºÙ¤ÏNIMS¤Î¥×¥ì¥¹¥ê¥ê¡¼¥¹»²¾È¡£
[28]¡ÖSIP¸¦µæÀ®²Ì¤ò¼Ò²ñ¼ÂÁõ¤¹¤ë¤¿¤á¤Î¥Þ¥Æ¥ê¥¢¥ë¥º¥¤¥ó¥Æ¥°¥ì¡¼¥·¥ç¥ó¥³¥ó¥½¡¼¥·¥¢¥àȯ­¡×¡¢¾ÜºÙ¤ÏNIMS¤Î¥×¥ì¥¹¥ê¥ê¡¼¥¹»²¾È¡£Åö³º¥µ¥¤¥È¡§MI¥³¥ó¥½¡¼¥·¥¢¥à
[29]¡ÖºÇ¾¯¤Î¼Â¸³²ó¿ô¤Ç¹â¤¤Í½Â¬ÀºÅÙ¤òÍ¿¤¨¤ëÈÆÍÑŪAIµ»½Ñ¤ò³«È¯ ¡ÁºàÎÁ³«È¯¤ÎDX : NIMS¡¢°°²½À®¡¢»°É©¥±¥ß¥«¥ë¡¢»°°æ²½³Ø¡¢½»Í§²½³Ø¤Î¿åʿϢ·È¤Ç¼Â¸½¡Á¡×¡¢¾ÜºÙ¤ÏNIMS¤Î¥×¥ì¥¹¥ê¥ê¡¼¥¹»²¾È¡£
[30]¡Ö¿Í¹©¥Ë¥å¡¼¥é¥ë¥Í¥Ã¥È¥ï¡¼¥¯¤ÇÌÀ¤é¤«¤Ë¤Ê¤Ã¤¿¹â²¹Ä¶ÅÁƳ¤Î±£¤ì¤¿µ¯¸»¡×¡¢¾ÜºÙ¤ÏNIMS¤Î¥×¥ì¥¹¥ê¥ê¡¼¥¹»²¾È¡£
[31]¡Öµ¡³£³Ø½¬¤ò³èÍѤ·¤¿¸úΨŪ¤Ê¥Í¥ª¥¸¥à¼§ÀФιâÆÃÀ­²½¤ËÀ®¸ù ¡Á¸Â¤é¤ì¤¿¼Â¸³¥Ç¡¼¥¿¤«¤éºÇ¾®¸Â¤Î¼Â¸³¤Ç¥Í¥ª¥¸¥à¼§ÀФκÇŬ¤ÊºîÀ½¾ò·ï¤òͽ¬¡Á¡×¡¢¾ÜºÙ¤ÏNIMS¤Î¥×¥ì¥¹¥ê¥ê¡¼¥¹»²¾È¡£
[32]¡Ö¥Ç¡¼¥¿¶îư·¿ÅŶ˿¨ÇÞ²òÀÏ¥¢¥ë¥´¥ê¥º¥à¤Î³«È¯ ¡Á¿Í¤Î¡Èµ¤ÉÕ¤­¡É¤ò»Ù±ç¤¹¤ë¤³¤È¤ÇæúÁǼҲñ¼Â¸½¤Î¤¿¤á¤Î¸úΨŪ¤ÊÅŶ˿¨ÇÞºàÎÁõº÷¤Ø¤ÎÆ»¶Ú¡Á¡×¡¢¾ÜºÙ¤ÏNIMS¤Î¥×¥ì¥¹¥ê¥ê¡¼¥¹»²¾È¡£
[33]¡Ö¿Í¹©ÃÎǽ¤Ç·Ö¸÷Í­µ¡Ê¬»Ò¤ò³«È¯ - Ê£»¨¤Ê¸½¾Ý¤ò¼¨¤¹µ¡Ç½À­Ê¬»Ò¤Î³«È¯¤Ë¹×¸¥ - ¡×¡¢¾ÜºÙ¤ÏNIMS¤Î¥×¥ì¥¹¥ê¥ê¡¼¥¹»²¾È¡£
[34]¡Ö¼«Æ°¼Â¸³¥í¥Ü¥Ã¥È¤È¥Ç¡¼¥¿²Ê³Ø¤ÎÏ¢·È¤Ë¤è¤ê - ¥ê¥Á¥¦¥à¶õµ¤ÅÅÃӤΥµ¥¤¥¯¥ë¼÷Ì¿¤ò¸þ¾å¤¹¤ëÅŲò±Õ¤Î³«È¯¤ËÀ®¸ù - ¡×¡¢¾ÜºÙ¤ÏNIMS¤Î¥×¥ì¥¹¥ê¥ê¡¼¥¹»²¾È¡£
[35]¡Ö¥Ç¡¼¥¿²Ê³Ø¤Ç¥Ï¥Ã¥­¥ê¸«¤¨¤¿ÈùÀ¸ÊªÈ¯ÅÅ - ÈùÀ¸ÊªÇ³ÎÁÅÅÃÓ¤äÀ¸Ê¬²òÀ­ºàÎÁ¤Î¥Ç¡¼¥¿¶îư¸¦µæ¤Ë¸þ¤±¤Æ - ¡×¡¢¾ÜºÙ¤ÏNIMS¤Î¥×¥ì¥¹¥ê¥ê¡¼¥¹»²¾È¡£
[36]¡Ö¼«Î§¼«Æ°¼Â¸³¤Î¤¿¤á¤ÎÈÆÍÑ¥½¥Õ¥È¥Õ¥§¥¢ : NIMS-OS¤ò³«È¯ - ¥í¥Ü¥Ã¥È¼Â¸³¤ÈºàÎÁõº÷ÍÑAI¤ÎÏ¢·È¥×¥é¥Ã¥È¥Õ¥©¡¼¥à - ¡×¡¢¾ÜºÙ¤ÏNIMS¤Î¥×¥ì¥¹¥ê¥ê¡¼¥¹»²¾È¡£
[37]¡ÖAI¤ÈºàÎÁ¸¦µæ¼Ô¤Î¥³¥é¥Ü¤ÇÂÑÇ®ºàÎÁ¤ò¶¯¤¯¤¹¤ë - AI¤Î°ì¸«´ñÈ´¤Ê¡Ö¼ê¡×¤«¤éǼÆÀ¤ÎÇ®½èÍýË¡¤ò¹Í°Æ - ¡×¡¢¾ÜºÙ¤ÏNIMS¤Î¥×¥ì¥¹¥ê¥ê¡¼¥¹»²¾È¡£
[38]¡ÖƼ¹ç¶â¤ÎÆÃÀ­Í½Â¬¥â¥Ç¥ë¤ò¹½ÃÛ - »°É©¥Þ¥Æ¥ê¥¢¥ë¤Î¥Þ¥°¥Í¥·¥¦¥àƼ¹ç¶â¡ÖMSP¥·¥ê¡¼¥º¡×Í¥°ÌÀ­¤ò΢ÉÕ¤± - ¡×¡¢¾ÜºÙ¤ÏNIMS¤Î¥×¥ì¥¹¥ê¥ê¡¼¥¹»²¾È¡£
[39]¡Ö¿Ê²½¤¹¤ëAI¤¬¥¨¥³¤Ê¿åÁǤÎÉáµÚ¤Î¤¿¤á¤Î¿·µ¬ºàÎÁ³«È¯¤ò»Ù±ç¤¹¤ë - Çò¶â²¸µÁǤò»È¤ï¤Ê¤¤ÅŶ˺àÎÁ¤òõ¤·½Ð¤¹ - ¡×¡¢¾ÜºÙ¤ÏNIMS¤Î¥×¥ì¥¹¥ê¥ê¡¼¥¹»²¾È¡£

[¸øÊçÅù¡ÉÊ罸¡É¾ðÊó][¾®Ìܼ¡]

[ºÎÍѾðÊó]¡Ê£±£²¡¿£±¡¢£²£°£±£·¤«¤é´ü¸Â¤Î¤Ê¤¤¤â¤Î¤Ï¸¶Â§·ÇºÜ¤·¤Þ¤»¤ó¡Ë[¾®Ìܼ¡]

[¥»¥ß¥Ê¡¼¾ðÊó¡Ê´Þ¤à¸òή²ñ¡¢¹Ö½¬²ñ¡¢¥³¥í¥­¥¦¥à¡Ë][¾®Ìܼ¡]
[123]ɽÌ̲ʳإ»¥ß¥Ê¡¼2024¡Ê¼ÂÁ©ÊÔ¡Ë ´ðÁäȼÂÍÑÎã¤òÄ̤¸¤Æ¤³¤ì¤«¤é³Ø¤Ö¥¤¥ó¥Õ¥©¥Þ¥Æ¥£¥¯¥¹¡¢£³·î£±£´Æü¡Ê£²£°£²£´¡Ë¡¢³«ºÅÃÏ¡§ÂçÅĶ軺¶È¥×¥é¥¶PiO ÆÃÊ̲ñµÄ¼¼¡ÊÅìµþ¡Ë ¤Þ¤¿¤Ï¥ª¥ó¥é¥¤¥ó¼õ¹Ö¡Ê¥Ï¥¤¥Ö¥ê¥Ã¥É³«ºÅ¡Ë¡¢¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È[½ªÎ»]¡£
[124]ÍýÏÀ¥¤¥ó¥Õ¥©¡¼¥Þ¥ë¥»¥ß¥Ê¡¼¡§¡ÖAI meets Theoretical Physics: machine learning assisted solution of a difficult problem in frustrated magnetism¡×¡¢¹Ö±é¼Ô¡§Prof. Nic Shannon(Okinawa Institute of Science and Technology)¡¢£¶·î£±£°Æü¡Ê£²£°£²£´¡Ë¸á¸å£´»þ¤è¤ê¡¢³«ºÅÃÏ¡§ÊªÀ­¸¦µæ½êËÜ´Û6³¬ Âè5¥»¥ß¥Ê¡¼¼¼ (A615)¡ÊÇð¡¢ÀéÍÕ¡Ë¡¢¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È[½ªÎ»]¡£
[125]¥»¥ß¥Ê¡¼¡§¡ÖMachine Learning for Quantum Materials¡×¡¢¹Ö±é¼Ô¡§Prof. Eun-Ah Kim(Cornell University)¡¢£¶·î£²£´Æü¡Ê£²£°£²£´¡Ë¸á¸å£´»þ¤è¤ê¡¢³«ºÅÃÏ¡§ÊªÀ­¸¦µæ½êËÜ´Û6³¬ Âè5¥»¥ß¥Ê¡¼¼¼ (A615)¡ÊÇð¡¢ÀéÍա˵ڤÓZoom¡Ê¥Ï¥¤¥Ö¥ê¥Ã¥É³«ºÅ¡Ë¡¢¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È[½ªÎ»]¡£
[126]¡Ú¥ª¥ó¥é¥¤¥ó¹ÖµÁ¡Û¡Ö¥Þ¥Æ¥ê¥¢¥ë¥º¡¦¥¤¥ó¥Õ¥©¥Þ¥Æ¥£¥¯¥¹¤Î´ðÁäȱþÍѡסÊ11·î³«¹Ö/Á´8²ó¡Ë¡¢³«ºÅÃÏ¡§Zoom¤òÍøÍѤ·¤¿¥ª¥ó¥é¥¤¥ó¹ÖµÁ¡¢¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È

[¥Õ¥©¡¼¥é¥à¾ðÊó]¡Ê´Þ¤à¥¹¥¯¡¼¥ë¡Ë[¾®Ìܼ¡]
[14]£²£°£²£³Ç¯ÅÙ³Ø½ÑÆ¤ÏÀ²ñ¡¦µ»½Ñ¸òή¥Õ¥©¡¼¥é¥à¡ÊPDF·Á¼°¥Ú¡¼¥¸¡Ë¡§¡Ö¥Ç¡¼¥¿¶îư¡¦ÁϽС¦³èÍÑ·¿¥Þ¥Æ¥ê¥¢¥ë¸¦µæºÇÁ°Àþ¡×¡¢£²·î£¸Æü¡Ê£²£°£²£´¡Ë¡¢³«ºÅÃÏ¡§Zoom¤òÍѤ¤¤¿¥ª¥ó¥é¥¤¥ó³«ºÅ¡¢¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È[½ªÎ»]¡£
[15]Machine learning for Advanced Material and Molecular Modelling¡¢£³·î£³£±Æü¡Á£´·î£´Æü¡Ê£²£°£²£µ¡Ë¡¢³«ºÅÃÏ¡§CECAM-UK-DARESBURY¡¢¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È¡£
[16]AIChemist¡¢£´·î£²£¸Æü¡Á£µ·î£²Æü¡Ê£²£°£²£µ¡Ë¡¢³«ºÅÃÏ¡§CECAM-HQ-EPFL, Lausanne¡Ê¥¹¥¤¥¹¡Ë¡¢¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È¡£
[17]Machine Learning in Physical Sciences: Theory and Applications¡¢£µ·î£²£¶Æü¡Á£µ·î£³£±Æü¡Ê£²£°£²£µ¡Ë¡¢³«ºÅÃÏ¡§CECAM-FR-RA¡¢¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È¡£
[18]School on Machine Learning for Molecules and Materials Research¡¢£¶·î£¹Æü¡Á£¶·î£±£³Æü¡Ê£²£°£²£µ¡Ë¡¢³«ºÅÃÏ¡§Zadar¡Ê¥¯¥í¥¢¥Á¥¢¡Ë¡¢¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È¡£
[19]Systematic coarse-graining and machine learning in soft matter physics with ESPResSo¡¢£±£°·î£¶Æü¡Á£±£°·î£±£°Æü¡Ê£²£°£²£µ¡Ë¡¢³«ºÅÃÏ¡§CECAM-DE-SMSM, Institute for Computational Physics, University of Stuttgart¡ÊÆÈ¡Ë¡¢¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È¡£

[¸¦µæ²ñ¾ðÊó]¡Ê´Þ¤à¥·¥ó¥Ý¥¸¥¦¥à¡¢¹Ö±é²ñ¡Ë[¾®Ìܼ¡]
[59]ÆÃÊÌ´ë²è¡Ö²½³Ø¤Ë¤ª¤±¤ë¾ðÊó¡¦AI ¤Î³èÍѡס¢£³·î£²£±Æü¡Ê£²£°£²£´¡Ë¡¢³«ºÅÃÏ¡§ÆüËÜÂç³ØÍý¹©³ØÉô Á¥¶¶¥­¥ã¥ó¥Ñ¥¹ A1423(14¹æ´Û [2³¬] 1423)¡ÊÁ¥¶¶¡¢ÀéÍÕ¡Ë¡¢¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È[½ªÎ»]¡£
[60]Â裱£·£¶²ó ¥Õ¥í¥ó¥Æ¥£¥¢ºàÎÁ¸¦µæ½ê³Ø½Ñ¹Ö±é²ñ¡Ø¥Ç¡¼¥¿¶îư·¿¥¢¥×¥í¡¼¥Á¤Ë¤è¤ëÅŵ¤²½³ØºàÎÁ¤Î³«È¯²Ã®¡Ù¡¢£µ·î£³£°Æü¡Ê£²£°£²£´¡Ë¡¢³«ºÅÃÏ¡§Åìµþ¹©¶ÈÂç³Ø¤¹¤º¤«¤±Â業¥ã¥ó¥Ñ¥¹ Âç³Ø²ñ´Û¿ÌÜŪ¥Û¡¼¥ë¡ÊÃϿޭ°¡Ë¡Ê²£ÉÍ¡¢¿ÀÆàÀî¡Ë¡¢¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È[½ªÎ»]¡£
[61]¥Þ¥Æ¥ê¥¢¥ëÀïάÁí¹ç¥·¥ó¥Ý¥¸¥¦¥à2025¡¢£±·î£³£±Æü¡Ê£²£°£²£µ¡Ë¡¢³«ºÅÃÏ¡§Åìµþ¥Ó¥Ã¥°¥µ¥¤¥È ²ñµÄÅï1³¬ ¥ì¥»¥×¥·¥ç¥ó¥Û¡¼¥ë¡Ê¹¾Åì¶è¡¢Åìµþ¡Ë¡Ü¥ª¥ó¥é¥¤¥ó¡Ê¥Ï¥¤¥Ö¥ê¥Ã¥É³«ºÅ¡Ë¡¢¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È[½ªÎ»]¡£
[62]MateriAI 2024 ¡Á ·×»»Êª¼Á²Ê³ØÊ¬Ìî¤Ë¤ª¤±¤ëAIµ»½Ñ¤Î³èÍÑ¡¢£³·î£³Æü¡Á£³·î£µÆü¡Ê£²£°£²£µ¡Ë¡¢³«ºÅÃÏ¡§¸æÅ¾ì¹â¸¶ »þÇ·À´¡Ê¸æÅ¾ì»Ô¡¢ÀŲ¬¸©¡Ë¡¢ ¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È[½ªÎ»]¡£ [ÆþÌç¹ÖºÂ¾ðÊó¡Ê´Þ¤à´ðÁùֺ¡Ë]
Âè47²óÇöË졦ɽÌÌʪÍý ´ðÁùֺ¡§¥Ç¡¼¥¿¥µ¥¤¥¨¥ó¥¹¤ò³èÍѤ·¤¿¸ÇÂκàÎÁ¡¦É½Ì̸¦µæ¤ÎºÇÁ°Àþ¡¢£±£±·î£±£¶Æü¡Ê£²£°£±£¸¡Ë¡¢³«ºÅÃÏ¡§ÅìµþÍý²ÊÂç³Ø ¿¹¸Íµ­Ç°´Û Âè°ì¥Õ¥©¡¼¥é¥à¡Ê¿·½É¡¢Åìµþ¡Ë¡¢¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È[½ªÎ»]¡£
Âè49²óÇöË졦ɽÌÌʪÍý ´ðÁùֺ¡§¾ðÊó¥Ç¡¼¥¿²Ê³Ø¤Ë´ð¤Å¤¯·ë¾½ºàÎÁ¡¦³¦ÌÌ¡¦¥×¥í¥»¥¹¹©³Ø¤Î¿·Å¸³« ¡Á¼Â¸³¤È¤ÎÏ¢·È±¿ÍѽѡÁ¡¢£±£±·î£±£³Æü¡Ê£²£°£²£°¡Ë¡¢³«ºÅÃÏ¡§¥ª¥ó¥é¥¤¥ó³«ºÅ¡¢¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È[½ªÎ»]¡£
[¼ã¼ê¤Î²ñ¾ðÊó]
ÂèÏ»²ó¥±¥â¥¤¥ó¥Õ¥©¥Þ¥Æ¥£¥¯¥¹¼ã¼ê¤Î²ñ¡¢£±£°·î£²£µÆü¡Ê£²£°£±£·¡Ë¡¢³«ºÅÃÏ¡§¾ïÈ×¹©¶È²ñ²ñ´Û¡Ê±§Éô»Ô¡¢»³¸ý¡Ë¡¢¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È[½ªÎ»]¡£
[®½¬¥³¡¼¥¹¾ðÊó]
Åý·×¿ôÍý¸¦µæ½ê¡¢H28ǯÅÙÅý·×»×¹ÍÎϰéÀ®»ö¶Èµ¡³£³Ø½¬Â®½¬¥³¡¼¥¹¡¢£²·î£¹Æü[½ªÎ»]¡¢£³·î£·Æü[½ªÎ»]¡¢£³·î£²£¸Æü¡Ê£²£°£±£·¡Ë[½ªÎ»]¡¢³«ºÅÃÏ¡§£Ô£Ë£Ð½Â륫¥ó¥Õ¥¡¥ì¥ó¥¹¥»¥ó¥¿¡¼¡¢¥«¥ó¥Õ¥¡¥ì¥ó¥¹¥ë¡¼¥à5A¡ÊÅìµþ¡Ë[¸½ºß¡¢Äê°÷¤Ë㤷¿½¹þ¼õÉÕÄä»ßÃæ]¡¢¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È¡£
[²Æ¤Î³Ø¹»¾ðÊó]
[3]Applied mathematics and machine learning perspectives on Big Data Problems in Computational Sciences¡¢£¹·î£³£°Æü¡Á£±£°·î£´Æü¡Ê£²£°£±£¹¡Ë¡¢³«ºÅÃÏ¡¨CECAM-DE-SMSM¡¢¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È[½ªÎ»]¡£
[½©¤Î³Ø¹»¾ðÊó]
¥±¥â¥¤¥ó¥Õ¥©¥Þ¥Æ¥£¥¯¥¹½©¤Î³Ø¹»(Autumn School of Chemoinformatics in Tokyo)¡¢£±£±·î£²£µÆü¡¢£²£¶Æü¡Ê£²£°£±£µ¡Ë¡¢³«ºÅ ÃÏ¡§³«ºÅÃÏ¡§ÅìÂ绳¾å²ñ´ÜÂç²ñµÄ¼¼¡ÊËܶ¿¡¢Åìµþ¡Ë¡¢¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È [½ªÎ»]¡£
[ƤÏÀ²ñ¾ðÊó]
[4]ÆüËܶⰳزñÅ쳤»ÙÉô¡¦ÆüËÜÅ´¹Ý¶¨²ñÅ쳤»ÙÉô³Ø½ÑƤÏÀ²ñ¡Ê¢«PDF·Á¼°¥Ú¡¼¥¸¡Ë¡§¡Ö¥¤¥ó¥Õ¥©¥Þ¥Æ¥£¥¯¥¹¤ÈÏ¢·È¤·¤¿¥â¥Î¤Å¤¯¤ê¤È·×¬µ»½Ñ¡×¡¢£±·î£³£±Æü¡Ê£²£°£±£¸¡Ë¡¢³«ºÅÃÏ¡§Ì¾¸Å²°Âç³ØÅ컳¥­¥ã¥ó¥Ñ¥¹ ES Áí¹ç´Û 1F ES¥Û¡¼¥ë¡Ê̾¸Å²°¡¢°¦ÃΡˡ¢¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È[½ªÎ»]¡£
[5]Âè42²ó¥±¥â¥¤¥ó¥Õ¥©¥Þ¥Æ¥£¥¯¥¹Æ¤ÏÀ²ñ¡¢£±£°·î£²£¸Æü¡¢£²£¹Æü¡Ê£²£°£±£¹¡Ë¡¢³«ºÅÃÏ¡§ÅìµþÂç³Ø »³¾å²ñ´Û Âç²ñµÄ¼¼¡ÊËܶ¿¡¢Åìµþ¡Ë¡¢¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È[½ªÎ»]¡£
[6]Âè43²ó¥±¥â¥¤¥ó¥Õ¥©¥Þ¥Æ¥£¥¯¥¹Æ¤ÏÀ²ñ¡¢£±£²·î£¹Æü¡¢£±£°Æü¡Ê£²£°£²£°¡Ë¡¢³«ºÅÃÏ¡§¥ª¥ó¥é¥¤¥ó³«ºÅ(Zoom)¡¢¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È[½ªÎ»]¡£
[Workshop¾ðÊó]¡Ê´Þ¤àÀâÌÀ²ñ¡¢¥ï¡¼¥¯¥·¥ç¥Ã¥×¡¢¥ß¡¼¥Æ¥£¥ó¥°¡¢³Ø²ñ¡Ë
[0]Workshop¾ðÊó(ipam, UCLA)
[68]Bringing together rare event sampling, excited state dynamics and machine learning¡¢£²·î£²£¶Æü¡Á£²·î£²£¹Æü¡Ê£²£°£²£´¡Ë¡¢³«ºÅÃÏ¡§CECAM-AT, University of Vienna, Faculty of Chemistry¡ÊÔÔ¡Ë¡£¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È[½ªÎ»]¡£
[69]Machine-actionable data interoperability for the chemical sciences (MADICES 2)¡¢£´·î£²£²Æü¡Á£´·î£²£µÆü¡Ê£²£°£²£´¡Ë¡¢³«ºÅÃÏ¡§Zuse Institute Berlin (CECAM-DE-MMS)¡ÊÆÈ¡Ë¡£¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È[½ªÎ»]¡£
[70]Machine Learning Modalities for Materials science¡¢£µ·î£±£³Æü¡Á£µ·î£±£·Æü¡Ê£²£°£²£´¡Ë¡¢³«ºÅÃÏ¡§Ljubljana¡Ê¥¹¥í¥Ù¥Ë¥¢¡Ë¡£¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È[½ªÎ»]¡£
[71]From Machine-Learning Theory to Driven Complex Systems and back¡¢£µ·î£²£²Æü¡Á£µ·î£²£´Æü¡Ê£²£°£²£´¡Ë¡¢³«ºÅÃÏ¡§CECAM-HQ-EPFL, Lausanne¡Ê¥¹¥¤¥¹¡Ë¡£¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È[½ªÎ»]¡£
[72]Open Databases Integration for Materials Design¡¢£¶·î£±£°Æü¡Á£¶·î£±£´Æü¡Ê£²£°£²£´¡Ë¡¢³«ºÅÃÏ¡§CECAM-HQ-EPFL, Lausanne¡Ê¥¹¥¤¥¹¡Ë¡£¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È[½ªÎ»]¡£
[73]Machine Learning of First Principles Observables¡¢£··î£¸Æü¡Á£··î£±£²Æü¡Ê£²£°£²£´¡Ë¡¢³«ºÅÃÏ¡§Zuse Institute Berlin¡ÊÆÈ¡Ë¡£¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È[½ªÎ»]¡£
[74]L2M3: Large language models for materials, molecules and beyond¡¢£··î£¹Æü¡Á£··î£±£²Æü¡Ê£²£°£²£´¡Ë¡¢³«ºÅÃÏ¡§CECAM-HQ-EPFL, Lausanne¡Ê¥¹¥¤¥¹¡Ë¡£¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È[½ªÎ»]¡£
[75]Machine Learning Potentials: From Interfaces to Solution¡¢£¸·î£²£·Æü¡Á£¸·î£²£¹Æü¡Ê£²£°£²£´¡Ë¡¢³«ºÅÃÏ¡§Ruhr University Bochum¡ÊÆÈ¡Ë¡£¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È[½ªÎ»]¡£
[76]Machine Learning Interatomic Potentials and Accessible Databases¡¢£¹·î£¹Æü¡Á£¹·î£±£±Æü¡Ê£²£°£²£´¡Ë¡¢³«ºÅÃÏ¡§Grenoble¡ÊÊ©¡Ë¡£¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È[½ªÎ»]¡£
[77]Leveraging Machine Learning for Sampling Rare Events in Biomolecular Systems¡¢£¹·î£±£·Æü¡Á£¹·î£±£¹Æü¡Ê£²£°£²£´¡Ë¡¢³«ºÅÃÏ¡§CECAM-DE-SMSM¡£¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È[½ªÎ»]¡£
[78]Expanding the Impact of Molecular Simulations by Integrating Machine Learning with Statistical Mechanics¡¢£±£°·î£±£°Æü¡Á£±£°·î£±£²Æü¡Ê£²£°£²£´¡Ë¡¢³«ºÅÃÏ¡§Grand Hotel Vesuvio, Sorrento¡Ê°Ë¡Ë¡£¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È[½ªÎ»]¡£
[79]Density Functional Theory and Artificial Intelligence learning from each other¡¢£³·î£³Æü¡Á£³·î£¶Æü¡Ê£²£°£²£µ¡Ë¡¢³«ºÅÃÏ¡§CECAM-HQ-EPFL, Lausanne¡Ê¥¹¥¤¥¹¡Ë¡£¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È[½ªÎ»]¡£
[80]Machine Learning for Materials Discovery (ML4MD)¡¢£µ·î£µÆü¡Á£µ·î£¸Æü¡Ê£²£°£²£µ¡Ë¡¢³«ºÅÃÏ¡§CECAM-FI¡£¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È¡£
[81]Virtual Materials Design: AI, Simulation, and Workflows¡¢£¶·î£²Æü¡Á£¶·î£µÆü¡Ê£²£°£²£µ¡Ë¡¢³«ºÅÃÏ¡§Karlsruhe Institute of Technology, FTU, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen¡ÊÆÈ¡Ë¡£¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È¡£
[82]From operando electron microscopy images to atomistic models: Machine Learning assisted analysis in the age of big data¡¢£¶·î£²£µÆü¡Á£¶·î£²£·Æü¡Ê£²£°£²£µ¡Ë¡¢³«ºÅÃÏ¡§CECAM-DE-MMS¡£¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È¡£
[83]Machine Learning Advances for Molecular and Materials Property Prediction¡¢£··î£·Æü¡Á£··î£¹Æü¡Ê£²£°£²£µ¡Ë¡¢³«ºÅÃÏ¡§CECAM-US-CENTRAL, University of Notre Dame, Indiana¡ÊÊÆ¹ñ¡Ë¡£¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È¡£
[84]Biomolecular Dynamics in the Age of Machine Learning¡¢£··î£±£´Æü¡Á£··î£±£¶Æü¡Ê£²£°£²£µ¡Ë¡¢³«ºÅÃÏ¡§CECAM-US-CENTRAL¡£¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È¡£
[85]Generative AI and Large Language Models for protein modeling across sequence-structure-function scales : From predicting protein dynamics to programmable biology and drug design¡¢£¹·î£²£´Æü¡Á£¹·î£²£¶Æü¡Ê£²£°£²£µ¡Ë¡¢³«ºÅÃÏ¡§CECAM-Lugano, Lugano¡Ê¥¹¥¤¥¹¡Ë¡£¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È¡£
[86]When data science meets molecular dynamics¡¢£±£°·î£±£µÆü¡Á£±£°·î£±£·Æü¡Ê£²£°£²£µ¡Ë¡¢³«ºÅÃÏ¡§CECAM-HQ-EPFL, Lausanne¡Ê¥¹¥¤¥¹¡Ë¡£¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È¡£
[87]MADICES 3: Machine-actionable Data Interoperability for the Chemical Sciences¡¢£±£°·î£²£°Æü¡Á£±£°·î£²£´Æü¡Ê£²£°£²£µ¡Ë¡¢³«ºÅÃÏ¡§PSI, Villigen¡Ê¥¹¥¤¥¹¡Ë¡£¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È¡£
[88]Uncertainty quantification in atomistic modeling: From uncertainty-aware density functional theory to machine learning¡¢£±£±·î£²£µÆü¡Á£±£±·î£²£¸Æü¡Ê£²£°£²£µ¡Ë¡¢³«ºÅÃÏ¡§CECAM-HQ-EPFL, Lausanne¡Ê¥¹¥¤¥¹¡Ë¡£¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È¡£
[89]A roadmap for an atomistic machine learning software ecosystem¡¢£±·î£±£¹Æü¡Á£±·î£²£±Æü¡Ê£²£°£²£¶¡Ë¡¢³«ºÅÃÏ¡§CECAM-HQ-EPFL, Lausanne¡Ê¥¹¥¤¥¹¡Ë¡£¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È¡£
[¹ñºÝ²ñµÄ¾ðÊó]
[3]Physics Informed Machine Learning¡¢£±·î£±£¹Æü¡Á£²£²Æü¡Ê£²£°£±£¶¡Ë¡¢Êƹñ¤Ç³«ºÅ[½ªÎ»]¡£
[4]MRM2023/IUMRS-ICA2023¡¢Symposium A-5:"Advanced Algorithms and Tools for Materials Informatics"¡¢£±£²·î£±£±Æü¡Á£±£²·î£±£¶Æü¡Ê£²£°£²£³¡Ë¡¢³«ºÅÃÏ¡§Kyoto International Conference Center¡ÊµþÅÔ¡Ë¡¢¾ÜºÙ¤Ï°ÆÆâ¥Ú¡¼¥¸»²¾È[½ªÎ»]¡£

[¥Ï¡¼¥É¥¦¥§¥¢´ØÏ¢¾ðÊó][¾®Ìܼ¡]
[1]Tesla M40(NVIDIA) ¢« µ¡³£³Ø½¬¸þ¤±¡§¾Ò²ðµ­»ö¥Ú¡¼ ¥¸(PC Watch)
[2]ÊÆGoogle¤¬¸øÉ½¤·¤¿"TPU"¡Ê¿¼Áسؽ¬ÀìÍÑ¥×¥í¥»¥Ã¥µ¡Ë¡§¾Ò²ðµ­ »ö ¥Ú¡¼¥¸¡ÊITproÆü·ÐBP¡Ë
[3]Intel¡¢µ¡³£³Ø½¬¤ËÆÃ²½¤·¤¿72¥³¥¢¤ÎXeon Phi¤òÅêÆþ¡§¾Ò²ðµ­»ö¥Ú¡¼¥¸(PC Watch)

[ÁÈ¿¥¡¦µ¡´ØÅù¾ðÊó][¾®Ìܼ¡]
[1]¥Ç¡¼¥¿²Ê³ØÅª´ÑÅÀ¤«¤é¿ä¿Ê¤¹¤ë¿·¤¿¤Êʪ¼Á¡¦ºàÎÁ¸¦µæ¥Ï¥Ö¤Î³«Àß¡§¾ðÊóÅý¹ç·¿Êª¼Á¡¦ºàÎÁ³«È¯¥¤¥Ë¥·¥¢¥Æ¥£¥Ö[¾ðÊóÅý¹ç·¿Êª¼Á¡¦ºàÎÁ¸¦µæµòÅÀ]¢«¾ÜºÙ¤Ï¡¢µ¡¹½¤Î¥×¥ì¥¹¥ê¥ê¡¼¥¹¾ðÊ󻲾ȡ£
[2]£²£°£±£µÇ¯£±£±·î£±ÆüÉÕ¤±¡§µ¡Ç½ºàÎÁ¥³¥ó¥Ô¥å¥Æ¡¼¥·¥ç¥Ê¥ë¥Ç¥¶¥¤¥ó¸¦µæ¥»¥ó¥¿¡¼È¯Â­¡Ê¥×¥ì¥¹¥ê¥ê¡¼¥¹¡Ë¡£´ØÏ¢ÁÈ¿¥¡§¿Í¹©ÃÎǽ¸¦µæ¥»¥ó¥¿¡¼(*)¡Ê»ºÁí¸¦¡Ë
´ØÏ¢¾ðÊó¡§ÅìËÌÂç³ØÊÒÊ¿¥­¥ã¥ó¥Ñ¥¹¤Ë¡Ö»ºÁí¸¦¡¦ÅìËÌÂç ¿ôÍýÀèüºàÎÁ¥â¥Ç¥ê¥ó¥°¥ª¡¼¥×¥ó¥¤¥Î¥Ù¡¼¥·¥ç¥ó¥é¥Ü¥é¥È¥ê¡×¡ÊMathAM-OIL¡Ë¤òÀßΩ¢«»ºÁí¸¦¤Î¥×¥ì¥¹¥ê¥ê¡¼¥¹µ­»ö
[3]¡Ê¾ðÊó¡ËÅý·×¿ôÍý¸¦µæ½ê¤ÈSAS Institute Japan¤¬¶¦Æ±¤Ç¥Ó¥Ã¥°¥Ç¡¼¥¿Ê¬ÀϤ覵æ´ðÈס¢¥Ó¥Ã¥°¥Ç¡¼¥¿¥¤¥Î¥Ù¡¼¥·¥ç¥ó¥é¥Ü(BIL)¤òÀßΩ¡§Åý·×¿ôÍý¸¦µæ½ê¤Î¥×¥ì¥¹¥ê¥ê¡¼¥¹µ­»ö¡£
[4]Åìµþ¹©¶ÈÂç³Ø¤Ë¡Ö»ºÁí¸¦¡¦Å칩Âç ¼Â¼Ò²ñ¥Ó¥Ã¥°¥Ç¡¼¥¿³èÍÑ¥ª¡¼¥×¥ó¥¤¥Î¥Ù¡¼¥·¥ç¥ó¥é¥Ü¥é¥È¥ê¡×¡ÊRWBC-OIL¡Ë¤òÀßΩ¡Ê¢« - ¼Â¼Ò²ñ¥Ó¥Ã¥°¥Ç¡¼¥¿³èÍѵ»½Ñ¤Ë¤è¤ë¿·¤¿¤Ê²ÁÃÍÁϤ¤ò¼Â¸½ -¡Ë¡§»ºÁí¸¦¤Î¥×¥ì¥¹¥ê¥ê¡¼¥¹µ­»ö¡£
[5]¥Ç¡¼¥¿²Ê³Ø¤¬¤â¤¿¤é¤¹¡Ö¤â¤Î¤Å¤¯¤ê¡×³×¿· ¡Á Åý·×¿ôÍý¸¦µæ½ê¤¬¿·¥»¥ó¥¿¡¼¤òÀßΩ ¡Á¡§Åý·×¿ôÍý¸¦µæ½ê¤Î¥×¥ì¥¹¥ê¥ê¡¼¥¹µ­»ö¡Ê¿·¥»¥ó¥¿¡¼Ì¾¤Ï¡¢¡É¤â¤Î¤Å¤¯¤ê¥Ç¡¼¥¿²Ê³Ø¸¦µæ¥»¥ó¥¿¡¼¡É¡Ë
[6]¥Ç¡¼¥¿¶îưɽÌ̲ʳظ¦µæÉô²ñ¡Ê£¹¡¿£±£²¡¢£²£°£²£³¡¢¥¢¥É¥ì¥¹Êѹ¹¤ò³Îǧ¡Ë¡ÊÆüËÜɽÌÌ¿¿¶õ³Ø²ñ¡Ë
[7]²Ê³Ø¸¦µæÈñ½õÀ®»ö¶È¡Ö¿·³Ø½ÑÎΰ踦µæ¡Ê¸¦µæÎΰèÄó°Æ·¿¡Ë¡×¡§¼¡À¤Âåʪ¼Áõº÷¤Î¤¿¤á¤ÎÎ¥»¶´ö²¿³Ø
[8]¡Ö¹âÀ­Ç½¼§ÀФγ«È¯¤ËÌòΩ¤ÄºàÎÁ¥Ç¡¼¥¿¥×¥é¥Ã¥È¥Õ¥©¡¼¥à¤Î±¿ÍѤò - À¤³¦ºÇÂ絬ÌϤδõÅÚÎ༧À­ºàÎÁ¥Ç¡¼¥¿¥Ù¡¼¥¹¤È¿Í¹©ÃÎǽ¤òÍøÍѤ·¤¿À߷פǺàÎÁ³«È¯¤ò²Ã®¤Ø - ¡×¡¢»ºÁí¸¦¤Î¥×¥ì¥¹¥ê¥ê¡¼¥¹µ­»ö¡£
[ʸ¸¥¾ðÊó][¾®Ìܼ¡]
[1]»¨»ï¡ÖɽÌÌ²Ê³Ø¡×¡ÊÆüËÜɽÌ̲ʳزñ¡Ë¡¢£²£°£±£µÇ¯£±£°·î¹æ¡¢ÆÃ½¸¡§¥Þ¥Æ¥ê¥¢¥ë¥º¡¦¥¤¥ó¥Õ¥©¥Þ¥Æ¥£¥¯¥¹ - ɽÌ̲ʳؤΥӥ尥ǡ¼¥¿¤Î¹½ÃÛ -
[2]»ûÁÒÀ¶Ç·¡¢ÆüËÜʪÍý³Ø²ñ»ï¡§¡Öʪ¼Á²Ê³Ø¤Ë¤ª¤±¤ë¿·¤·¤¤µ¢Ç¼Åª¥¢¥×¥í¡¼¥Á Keyword: ¥Þ¥Æ¥ê¥¢¥ë¥º¡¦¥¤¥ó¥Õ¥©¥Þ¥Æ¥£¥¯¥¹¡×¡¢Â裷£³´¬¡¢Â裳¹æ¡¢£±£³£²Êǡʣ²£°£±£¸¡Ë
[3]±þÍÑʪÍý³Ø²ñ ÇöË졦ɽÌÌʪÍýʬ²Ê²ñ¡§¥Ë¥å¡¼¥¹¥ì¥¿¡¼¡Ö¥Ó¥Ã¥°¥Ç¡¼¥¿¤ò³èÍѤ·¤¿¿·ºàÎÁ¸¦µæ ¡Á¥Þ¥Æ¥ê¥¢¥ë¥º¥¤¥ó¥Õ¥©¥Þ¥Æ¥£¥¯¥¹¤Ï¡¢¸¦µæ¼Ô¤Î·Ð¸³¤È´ª¤È¤ò¤¤¤«¤Ë»Ù±ç¤¹¤ë¤Î¤«¡ª¡Á¡×¡¢No. 162 ¡Ê£²£°£±£¸Ç¯£³·î¡Ë
[4]²½³Ø¤È¹©¶È¡§ÆÃ½¸¡Ö¥Þ¥Æ¥ê¥¢¥ë¥º¡¦¥¤¥ó¥Õ¥©¥Þ¥Æ¥£¥¯¥¹¡×¡¢Â裷£±´¬¡¢£¸·î¹æ¡¢£¶£µ£°ÊÇ¡Á£¶£¶£·Êǡʣ²£°£±£¸¡Ë
[5]·×»»¹©³Ø¡§ÆÃ½¸¡Ö¥Ç¡¼¥¿Æ±²½¤Î³èÍѤ˸þ¤±¤Æ¡×¡¢Â裲£´´¬¡¢Â裱¹æ¡¢£´ÊÇ¡Á£²£°Êǡʣ²£°£±£¹¡Ë
[6]Ìî¼ͪʹ¡¢»³ÃÏÍÎÊ¿¡¢º£ÅÄÀµ½Ó¡¢ÆüËÜʪÍý³Ø²ñ»ï¡§¡Öµ¡³£³Ø½¬¤òÍѤ¤¤ÆÎ̻ҿÂηϤòɽ¸½¤¹¤ë¡×¡¢Â裷£´´¬¡¢Â裲¹æ¡¢£·£²Êǡʣ²£°£±£¹¡Ë
[7]±þÍÑʪÍý³Ø²ñÇöË졦ɽÌÌʪÍýʬ²Ê²ñ NEWS LETTER No. 166 (March 2019)¡§´¬Æ¬¸À¡Ö¥Ç¡¼¥¿¥µ¥¤¥¨¥ó¥¹¤ò³èÍѤ·¤¿¸ÇÂκàÎÁ¡¦É½Ì̸¦µæ¤ÎºÇÁ°Àþ¡×Æ£ÅÄÂç²ð¡¢¤½¤Î¾¡¢¥Ç¡¼¥¿²Ê³Ø¡¢µ¡³£³Ø½¬¡¢¥Ë¥å¡¼¥é¥ë¥Í¥Ã¥È¥ï¡¼¥¯Åù´ØÏ¢ÏÀʸ¤¢¤ê¡£
[8]ɽÌ̤ȿ¿¶õ¡§ÆÃ½¸¡Ö¥Ç¡¼¥¿¶îư²Ê³Ø¤Ë¤è¤ëɽÌÌ¡¦¿¿¶õ²Ê³Ø¸¦µæ¤Î¿·Å¸³«¡×¡¢Â裶£²´¬¡¢£³·î¹æ¡Ê£²£°£±£¹¡Ë [9]µÈÅÄμ¡¢´ä»³¤á¤°¤ß¡¢¥°¥© ¥Á¥ç¥ó¥ê¥ã¥ó¡¢±þÍÑʪÍý¡§¡ÖºàÎÁ¸¦µæ¤ÎµÕÌäÂê¤Èµ¡³£³Ø½¬¡×¡¢Â裹£°´¬¡¢Â裷¹æ¡¢£´£²£¸Êǡʣ²£°£²£±¡Ë

¡Ê»²¹Íʸ¸¥¡¢»²¹Í¥µ¥¤¥È¡¢»²¹Í¾ðÊóÅù¡Ë[¾®Ìܼ¡]

[ÀèÆ¬][ÁíÌܼ¡][ºÇ½é¤ËÌá¤ë][ÍѸ콸][È÷˺Ͽ][¿·ÃåÏÀʸ][Top]