Memorandum for the band calculation [Japanese][Top]
- Content
- Method
- Basic
- Technic
- Practice
- Out of opinion
This is a MEMORANDUM for the electronic
structure calculation.
References of every item dose not mean the original paper.
- Orbital Free
Method: S. Watson, B. J. Jesson, E. A. Carter and P. A.
Madden, Europhys. Lett., 41(1), 37(1998)
- J. A. Anta, B. J. Jesson and P. A. Madden,
Phys. Rev. B58, 6124(1998)
- B. Zhou, V. L. Ligneres and E. A. Carter, J. Chem. Phys.,
Vol. 122, No. 4, 044103(2005)[Improving][Covalent]
- D. J. Gonzalez, L. E. Gonzalez and M. J. Stott,
Phys. Rev. Lett., Vol. 94, No. 7, 077801(2005)[Liquid-vapor
interface][Liquid binary alloy][OF-AIMD]
- J. Chai and J. D. Weeks, Phys. Rev. B75,
205122(2007)[Orbital-free DFT][Kinetic potential][Ab initio
local PS]
- G. Ho, M. T. Ong, K. J. Casperson and E. A. Carter,
Phys. Chem. Chem. Phys., 9,
4951(2007)[Energetics][Kinetics][Vacancy diffusion and
aggregation][Shocked][OF-DFT]
- C. Huang and E. A. Carter, Phys. Chem. Chem. Phys.,
10, 7109(2008)[Transferable local PS]
- C. Huang and E. A. Carter, Phys. Rev. B81,
045206(2010)[Nonlocal orbital-free kinetic energy DF][Semiconductor]
- J. Lehtomäki, I. Makkonen, M. A. Caro, A. Harju1 and
O. Lopez-Acevedo, J. Chem. Phys. 141, 234102(2014)[Orbital-free
density functional theory][Implementation][Projector augmented-wave
method]
- W. Mi, X. Shao, C. Su, Y. Zhou, S. Zhang, Q. Li, H. Wang,
L. Zhang, M. Miao, Y. Wang, Y. Ma, Computer Physics Communications
200, 87(2016)[ATLAS][Real-space finite-difference
implementation]
- FP-DSUM:
first principles (FP) calculation with a mesoscopic-scale
disclination-strucuture units model (DSUM), O. A. Shenderova, D. W.
Brenner, A. A. Nazaroy, A. E. Romanov and L. H. Yang, Phys. Rev.
B57, R3181(1998), Multiscale modeling
approach
- Density-functional-theory-based local
quasicontinum method: M. Fago, R. L. Hayes, E. A. Carter
and M. Oritz, Phys. Rev. B70,
100102(R)(2004)[Prediction][Dislocation nucleation][Multiscale
material model]
- Projector augmented
wave method: N. A. W. Holzwarth, G. E. Matthews, A. R.
Tackett and R. B. Dunning, Phys. Rev. B57, 11827(1998)
- FLASTO:
Full-Potential Linearized augmented Slater-type orbital method, R. E.
Watoson and M. Weinert, Phys. Rev. B58, 5981(1998)
- Full-potential nonorthogonal local-orbital
minimum-basis band-structure scheme: K. Koepernik and H. Eschrig,
Phys. Rev. B59, 1743(1999)
- Augmented
Fourier component method: E. E. Krasovskii, F. Starrost and
W. Schattke, Phys. Rev. B59, 10504(1999)
- Third generation
LMTO : R. W. Tank and C. Arcangeli,
phys. stat. sol. (b)217, 89(2000)
- CASSCF-MD(AIMD) : R. L. Hayes, E. Fattal,
N. Govind and E. A. Carter, J. Am. Chem. Soc. 123, 641(2001)
- revGPM(revised global parametrization
method) : B. Magyari-Köpe, L. Vitos, B. Johansson and J. Kollar,
Phys. Rev. B66, 092103(2002)[Origin of octahedral tilting]
- Real-Space
Order-N Electronic Structure Calculation: K. Varga,
Z. Zhang and S. T. Pantelides, Phys. Rev. Lett., Vol. 93, No. 17,
176403(2004)[Lagrange function][Powerful basis sets]
- First-Principles
Recursion-Transfer-Matrix method(RTM): M. Tsukada,
K. Tagami, K. Hirose and N. Kobayashi, Journal of the Physical Society
of Japan, Vol. 74, No. 4, 1079(2005)[Quantum conductance][Molecular
bridge]
- Augmented space
recursion(ASR): K. K. Saha, A. Mookerjee and O. Jepsen,
Phys. Rev. B71, 094207(2005)[Random binary alloy][Agumented
space formulation]
- Bethe-Salpeter
equation : First principles calculations for a two electron
wave function.
- Reference: K. Hannewald, S. Glutsch and F. Bechstedt, Phys. Rev.
B62, 4519(2000)[Photoluminescence]
- Related: L. X. Benedict, Phys. Rev. B66,
193105(2002)[Electron-hole interaction][Screening in the exchange
term]
- PBE : J. P.
Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77,
3865(1996) : 78, 1396(1997)
- GGA : C.
Adamo and V. Barone, "Exchange functionals with improved long-range
behavior and adiabatic connection methods without adjustable
parameters: The mPW and mPW1PW methods", J. Chem. Phys.
108 (2), 664(1998)
- GGA2 :
J. Perdew, M. Ernzerhof, A. Zupan and K. Burke, "Nonlocality of the
density functional for exchange and correlation: Physical origins and
chemical consequences", J. Chem. Phys. 108, 1522(1998)
- New GGA :
A. D. Boese, N. L. Doltsinis, N. C. Handy and M. Sprik,
J. Chem. Phys., Vol. 112, No. 4, 1670(2000)
- Reparametrization of a
meta-GGA : Y. Zhang and D. R. Salahub, Chemical
Physics Letters 436, 394(2007)[Improved descriptions of van der Waals
interactions]
- New parametrization
(GGA) : A. D. Boese and N. C. Handy, J. Chem. Phys.,
Vol. 114, No. 13, 5497(2001)
- meta-GGA: C. Adamo, J. Chem. Phys.,
Vol. 112, No. 6, 2643(2000)[Thermochemistry][Kinetic energy density
dependent EX]
- J. P. Perdew, J. Tao, V. N. Staroverov and G. Scuseria, J. Chem.
Phys., Vol. 120, No. 15, 6898(2004)[Realistic nonempirical DF]
- L. A. Constantin, J. P. Perdew and J. Tao,
Phys. Rev. B73, 205104(2006)[EX hole][Jellium surface energy]
- J. Tao, J. P. Perdew, A. Ruzsinszky, G. E. Scuseria,
G. I. Csonka and V. N. Staroverov, Philosophical Magazine, Vol. 87,
No. 7, 1071(2007)[Non-empirical construction][Performance]
- Revised
PBE: Y.Zhang and W. Yang, Phys. Rev. Lett., Vol. 80,
890(1998)
- B. Hammer, L. B. Hansen and J. K. Norskov,
Phys. Rev. B59, 7413(1999)[Revised PBE]
- The PBE0
model: C. Adamo and V. Barone, J. Chem. Phys., Vol. 110,
No. 13, 6158(1999)
- C. Adamo, M. Cossi, G. Scalmani and V. Barone, Chemical Physics
Letters 307, 265(1999)[Polarizability]
- Modified
PBE: C. Adamo, J. Chem. Phys., Vol. 116, No. 14,
5933(2002)[Physically motivated][Improved performance]
- Extended
PBE: X. Xu and W. A. Goddard III, J. Chem. Phys., Vol. 121,
No. 9, 4068(2004)[Improved accuracy][Thermodynamic][Molecular system]
- PBE alpha
functional: G. K. H. Madsen, Phys. Rev. B75,
195108(2007)
- Kinetic energy
density dependent approximation: M. Ernzerhof and
G. E. Scuseria, J. Chem. Phys., Vol. 111, No. 3, 911(1999)[Local Tau
Approximation(LTA)]
- Full-potential
GGA: D. M. Bylander and L. Kleinman, Phys. Rev. B59,
6278(1999)
- More accurate
GGA: Z. Wu and R. E. Cohen, Phys. Rev. B73,
235116(2006)[Solid]
- F. Tran, R. Laskowski, P. Blaha and K. Schwarz,
Phys. Rev. B75, 115131(2007)@Performance on molecules, surfaces
and solids][Wu-Cohen GGA][Exchange-correlation energy functional]
- MGGA:
J. Tao, J. Chem. Phys., Vol. 116, No. 6, 2335(2002)[Hybrid
exchange-correlation functional]
- Nonempirical
Meta-GGA: J. Tao and J. P. Perdew, Phys. Rev. Lett.,
Vol. 91, No. 14, 146401(2003)[Climbing DF ladder][Designed]
- Metageneralized GGA:
I. D. Prodan, G. E. Scuseria and R. L. Martin, Phys, Rev. B73,
045104(2006)[Assessment][Screened Coulomb hybrid DF]
- TPSS
meta-GGA: Y. Kanai, X. Wang, A. Selloni and R. Car,
J. Chem. Phys., Vol. 125, No. 23, 234104(2006)[Exchange-correlation
functional][Transition state][Reaction barrier]
- Semiempirical
GGA: T. W. Keal and D. J. Tozer, J. Chem. Phys., Vol. 121,
No. 12, 5654(2004)
- Nonequivalence: A. E. Mattsson, et.
al., Phys. Rev. B73, 195123(2006)[PBE][PW91]
- Hybrid
functional approach: C. Franchini, et. al.,
Phys. Rev. B72, 045132(2005)[VASP-PAW]
- Hybrid
LDA: M. M. Korshunov, et. al., Phys. Rev. B72,
165104(2005)[Generalized TB][Strongly correlated electron]
- Hybrid
exchange-correlation functional: A. Nakata, Y. Imamura and
H. Nakai, J. Chem. Phys., Vol. 125, No. 6, 064109(2006)[Core, valence
and Rydberg excitations][Core-valence-Rydberg B3LYP]
- Reliability of Hybrid
Functionals: M. Jain, J. R. Chelikowsky and S. G. Louie,
Phys. Rev. Lett., Vol. 107, No. 21, 216806(2011)[Predicting band gaps]
- Beyond LDA
: K. Burke, J. P. Perdew and M. Ernzerhof, J. Chem. Phys., Vol. 109,
No. 10, 3760(1998)
- B97,B97-1,HCTH,HCTH-A : F. A. Hamprecht,
A. J. Cohen, D. J. Tozer and N. C. Handy, J. Chem. Phys., Vol. 109,
No. 15, 6264
- Influence of
Electronic Correlation : P. Baranek and J. Schamps,
J. Phys. Chem. B, 103, 2601(1999)
- Relation of (real,
reciprocal)-space wave function,charge density, Compton profile,
Structure factor, Momentum density
- Square of absolute values of the real-space
wave function is the charge
density.
- Auto correlation of the real-space wave
function is the B function(Modified "Compton profile" to "B function").
- Fourier transformation of the real-space
wave function is the reciprocal-space
wave function.(Thank you Dr. Rajendra for suggestion)
- Fourier transformation of the charge
density is the structure factor.
- Inverse Fourier transformation of the
structure factor is the charge
density.
- (The result of check): The author replaces "The Compton
profile" to "The B function"(Thank you
Dr. Rajendra for suggestion).
- Fourier transformation of the B
function is the momentum density.
- Inverse Fourier transformation of the
momentum density is the B
function.
- Inverse Fourier transformation of the
reciprocal-space wave function is the
real-space wave function.
- Auto correlation of the reciprocal-space
wave function is the structure
factor.
- Square of absolute values of the reciprocal-space wave function is
the momentum density.
- B function:B(r)
- Square of absolute values : P(r) = |phi(r)|2
- Auto correlation : B(r) = int{phi*(r)phi(r+r')dr'},
int:Integration, (this is not
convolution!).
- Dynamic mean-field
density functional approach : N. M. Maurits, A. V.
Zvelindovsky and J. G. E. M. Fraaije, J. Chem. Phys. 108(6),
2638(1998)
- Origin of conductance
quantization : I. P. Batra, Surface Science 395, 43(1998)
- Tunneling
conductance : H. Ishida, D. Wortmann and T. Ohwaki,
Phys. Rev. B70, 085409(2004)
- New quantum transition
state theory : E. Pollak and J.-L. Liao, J. Chem. Phys.,
Vol. 108, No. 7, 2733(1998)
- Hyperplanar transition
state theory : G. H. Johannesson and H. Jonsson,
J. Chem. Phys., Vol. 115, No. 21, 9644(2001)[Optimization]
- ECP: Energy-Consistent
Pseudopotential
Effective Core Potential(NWChem)
- Effective Core
Potential (derived from Troullier-Martins PS):
A. Alkauskas, A. Baratoff and C. Bruder, J. Phys. Chem. A, 108,
6863(2004)[Response function basis set]
- Effective Group
Potential(EGP): R. Poteau, I. Ortega, F. Alary,
A. R. Solis, Jean-Claude Barthelat and Jean-Pierre Daudey, J, Phys.
Chem. A, 105, 198(2001)[1][Method]
R. Poteau, F. Alary, H. A. El Makarim, Jean-Louis Heully,
Jean-Claude Barthelat and Jean-Pierre Daudey, J, Phys. Chem. A,
105, 206(2001)[2][Extraction][Transferability][Chemical
group][Covalent][Donner][Acceptor][Bond]
- LDA++ : A.
I. Lichtenstain and M. I. Katsnelson, Phys. Rev. B57,
6884(1998)
- LDA+U : H.
Sawada, Y. Morikawa, K. Terakura and N. Hamada, Phys. Rev. B56,
12154(1997),
(Original):A. I. Liechtenstein, V. I. Anisimov and J. Zaanen, Phys.
Rev. B52, R5467(1995)
- Vlasov-LDA
: A. Domps, P.-G. Reinhard and E. Suraud, Phys. Rev. Lett., Vol. 81,
No. 25, 5524(1998)[TDLDA]
- Time-Dependent
Density-Functional Theory-Response Theory:TD-DFRT :
P. Boulet, H. Chermette, C. Daul, F. Gilardoni, F. Rogemond, J. Weber
and G. Zuber, J. Phys. Chem. A, 105, 885(2001)[Absorption
spectra][delta-SCF]
- Time-Dependent
Discrete variable representation: TDDVR : B. Barkakaty and
S. Adhikari, J. Chem. Phys., Vol. 118, No. 12, 5302(2003)[Tunneling
problem]
- Thermal density
functional theory : M. G. Grigorov, J. Weber, N.
Vulliermet, H. Chermette and J. M. J. Tronchet, J. Chem. Phys., Vol.
108, No. 21, 8790(1998)
- Time-Dependent
Thermal TRansport Theory : R. Biele, R. D'Agosta and
A. Rubio, Phys. Rev. Lett., Vol. 115, No. 5, 056801(2015)
- Density-functional
perturbation theory : A. Debernardi, Phys. Rev. B57,
12847(1998)
- Generalized
variational density functional perturbation theory :
A. Putrino, D. Sebastiani and M. Parrinello, J. Chem. Phys., Vol. 113,
No. 17, 7102(2000)[CPMD]
- Density
functional perturbation orbital theory : D. Seo,
J. Chem. Phys., Vol. 125, No. 15, 154105(2006)[Spin polarization]
- Metric tensor
formulation of strain : D. R. Hamann, X. Wu, K. M. Rabe and
D. Vanderbilt, Phys. Rev. B71, 035117(2005)[DFPT]
- Real space
pseudopotential approach : E. S. Kadantsev and M. J. Stott,
Phys. Rev. B71, 045104(2005)[DFPT][Vibrational frequency]
- Many-body perturbation
theory : B. Farid, Philosophical Magagine Letters, Vol. 79,
No. 8, 581(1999)
- Relativistic
Many-Body Perturbation Theory (RMBPT): P. Indelicato,
E. Lindroth and J. P. Desclaux, Phys. Rev. Lett., Vol. 94, No. 2,
013002(2005)[Nonrelativistic limit][Dirac-Fock code][Brillouin
configuration]
- Extended Koopmans's
theorem : p15298, P. R. C. Kent, R. Q. Hood, M. D. Towler,
R. J. Needs and G. Rajagopal, Phys. Rev. B57, 15293(1998)
E. E. Krasovskii, Phys. Rev. B56, 12866(1997)
- Koopmans' theorem for
disordered quantum dots : P. N. Walker, G. Montambaux and
Y. Gefen, Phys. Rev. B60, 2541(1999)
- Large quantum
dots : H. Jiang, H. U. Baranger and W. Yang,
Phys. Rev. B68, 165337(2003)[DFT simulation]
- Grid-free density
functional theory : K. R. Glaesemann and M. S. Gordon,
J. Chem. Phys., Vol. 108, No. 24, 9959(1998)
- S. Varga, J. Phys. Chem., Vol. 127, No. 11,
114108(2007)[Grid-free DF][Periodic]
- LAP
functional : H. A. Duarte, E. Proynov and D. R. Salahub, J.
Chem. Phys., Vol. 109, No. 1, 26(1998), Reference: E. Proynov, E.
Ruiz, A. Vela and D. R. Salahub, Int. J. Quantum Chem. 29,
61(1995)
- Density-Functional
Theory for Superconductors : Section II(p1026), B. L.
Gyorffy, Z. Szotek, W. M. Temmerman, O. K. Andersen and O. Jepsen,
Phys. Rev. B58, 1025(1998)
- Ab initio
theory of superconductivity. I. : M. Lüders, et. al.,
Phys. Rev. B72, 024545(2005)[DF formalism][Approximate
functional]
- Ab initio
theory of superconductivity. II. : M. A. L. Marques,
et. al., Phys. Rev. B72, 024546(2005)[Application][Elemental
metal]
- Superconducting
Properties from first principles : A. Floris, et. al.,
Phys. Rev. Lett., Vol. 94, No. 3, 037004(2005)
- Magnetic-field-induced
superconductivity : K. Capelle, Phys. Rev B65,
100515(R)(2002)[Exchange-correlation effect]
- Anisotropic
Eliashberg Theory : H. J. Choi, M. L. Cohen and
S. G. Louie, Phys. Rev. B73, 104520(2006)[Two-band
model][Superconducting]
- Maximum
phonon-mediated superconducting transition temperature : J.
E. Moussa and M. L. Cohen, Phys. Rev. B74, 094520(2006)[Two
bands]
- Semi-infinite
crystals : W. Hummel and H. Bross, Phys. Rev. B58,
1620(1998)
- Constrained
density-functional theory : H. Meider and M. Springborg, J.
Phys.: Condens. Matter 10, 6953(1998)
- Electron transfer
parameters : Q. Wu and T. V. Voorhis, J. Phys. Chem. A,
110, 9212(2006)[Direct calculation][Constrained DFT][Marcus
theory]
- A new relativistic
theory : T. Nakajima and K. Hirao, Chemical Physics Letters
302, 383(1999)
T. Nakajima, T. Suzumura and K. Hirao, Chemical Physics Letters 304,
271(1999)
- Exact relativistic
electronic Hamiltonian : M. Filatov and D. Cremer, J. Chem.
Phys., Vol. 119, No. 22, 11526(2003)[Representation][Regular
approximation]
- Relativistic density
functional theory : H. M. Quiney and P. Belanzoni, J. Chem.
Phys., Vol. 117, No. 12, 5550(2002)[Gaussian basis sets]
- Relativistic
density-functional theory : Chung-Yuan Ren, Horng-Tay Jeng
and Chen-Shiung Hsue, Phys. Rev. B66,
125105(2002)[Interconfigurational energy][2rd and 3rd transition-metal
rows]
- Relativistic Density
Functional Calculation for Pt 2 : J. Anton,
T. Jacob, B. Fricke and E. Engel, Phys. Rev. Lett., Vol. 89, No. 21,
213001(2002)
- Relativistic
correction : A. Crepieux and P. Bruno,
Phys. Rev. B64, 094434(2001)
- Two-spinor fully
relativistic FEM: O. Kullie, D. Kolb and A. Rutkowski,
Chemical Physics Letters 383, 215(2004)[Two-center Coulomb problem]
- Excited
state : E. R. Bittner and D. S. Kosov, J. Chem. Phys., Vol.
110, No. 14, 6645(1999)[RPA][Hellmann-Feynman forces for excited
states]
- I. Hamada, Journal of the Physical Society of Japan, Vol. 82,
No. 10, 105002(2013)[Hellmann-Feynman force][DFT+U][Ultrasoft
pseudopotential]
- Multiresolution
analysis : T. A. Arias, Review of Modern Physics, Vol. 71,
No. 1, 267(1999)[Wavelet]
[Wavelet]:K. Cho, T. A. Arias, J. D. Joannopoulos and P. K. Lam,
Phys. Rev. Lett., Vol. 71, No. 12, 1808(1993)
[Wavelet]:S. Han, K. Cho and J. Ihm, Phys. Rev. B60,
1437(1999)[AE-DF]
- Wavelet
approximation : Heinz-Jürgen Flad, W. Hackbusch,
D. Kolb and R. Schneider, J. Chem. Phys., Vol. 116, No. 22,
964(2002)[Correlated wave function][Basic]
- H. Luo, D. Kolb, Heinz-Jürgen Flad, W. Hackbusch,
T. Koprucki, J. Chem. Phys., Vol. 117, No. 8, 3625(2002)[Hyperbolic
wavelet][Adaptive approximation]
- Colle-Salvetti-type
correlation functional : T. Tsuneda, T. Suzumura and
K. Hirao, J. Chem. Phys., Vol. 110, No. 22, 10664(1999)
- Force(FP-LMTO) : M. Springborg and A. Pohl,
J. Phys.: Condens. Matter 11, 7243(1999)
- Wind force :
P. J. Rous and D. N. Bly, Phys. Rev. B62, 8478(2000)[Adatom
electromigration][Heterogeneous surface]
- Current-induced
force(FP-LMTO) : T. N. Todorov, J. Hoekstra and
A. P. Sutton, Philosophical Magazine B, Vol. 80, No. 3,
421(2000)[Atomic-scale][Conductor]
- Nanoscale
conductor : M. Di Ventra and N. D. Lang,
Phys. Rev. B65, 045402(2002)[Transport][Current]
- Field Emission
Current : Y. Gohda, Y. Nakamura, K. Watanabe and
S. Watanabe, Phys. Rev. Lett., Vol. 85, No. 8,
1750(2000)[Self-consistent DF]
- Ring
currents : A. Ligabue, A. Soncini and P. Lazzeretti, J. AM.
CHEM. SOC., Vol. 124, No. 9, 2008(2002)[Leap-frog effect][Benzene]
- Nonequilibrium
electron transport : M. Brandbyge, J. Mozos, P. Ordejon, J.
Taylor and K. Stokbro, Phys. Rev. B65, 165401(2002)[DFT]
- Quantum transport
calculations : Z. Yang, A. Tackett and M. Di Ventra,
Phys. Rev. B66, 041405(2002)[Variational][Nonvariational]
- Quantum
transport : C. Verdozzi, G. Stefanucci and C. Almbladh,
Phys. Rev. Lett., Vol. 97, No. 4, 046603(2006)[Classical nuclear
motion]
- Correlated electron
transport : P. Delaney and J. C. Greer, Phys. Rev. Lett.,
Vol. 93, No. 3, 036805(2004)[Molecular electronics]
- Geminal functional
theory : D. A. Mazziotti, J. Chem. Phys., Vol. 112, No. 23,
10125(2000)[Density matrix]
- Aufbau
Ansatz : B. C. Rinderspacher and P. R. Schreiner,
J. Chem. Phys., Vol. 123, No. 21, 214104(2005)[Geminal functional
theory]
- Transferable
atomic-type orbital basis sets : S. D. Kenny,
A. P. Horsfield and H. Fujitani, Phys. Rev. B62, 4899(2000)
- Density-functional
embedding : J. R. Trail and D. M. Bird,
Phys. Rev. B62, 16402(2000)[Plane-wave basis]
- Complete Electron
Nuclear Dynamics : E. Deumens and Y. Öhrn, J. Phys.
Chem. A, 105, 2660(2001)
- Propagationg the
density matrix : H. B. Schlegel, J. M. Milman,
S. S. Iyengar, G. A. Voth, A. D. Daniels, G. E. Scuseria and
M. J. Frisch, J. Chem. Phys., Vol. 114, No. 22,
9758(2001)[AIMD][Gaussian orbital][O(N)]
S. S. Iyengar, H. B. Schlegel, J. M. Millam, G. A. Voth,
G. E. Scuseria and M. J. Frisch, J. Chem. Phys., Vol. 115, No. 22,
10291(2001)
- Density
matrix : D. A. Micha, A. Santana and A. Salam,
J. Chem. Phys., Vol. 116, No. 13, 5173(2002)[Nonlinear optical
response][Femtosecond photodesorption][Surface]
- Density matrix
functional : J. Cioslowski and K. Pernal, J. Chem. Phys.,
Vol. 116, No. 13, 4802(2002)[Weak intermolecular interaction]
- Density-matrix
perturbation theory : M. Lazzeri and F. Mauri,
Phys. Rev. B68, 161101(2003)[Higher-order]
- Generalized
Perturbation Method (GPM): A. V. Ruban, S. Shallcross,
S. I. Simak and H. L. Skriver, Phys. Rev. B70,
125115(2004)[Magnetic configurational energy]
- Efficient
recursion : T. Ozaki, Phys. Rev. B64,
195110(2001)[O(N)][Inverting][Overlap matrix]
- T. Ozaki and K. Terakura, Phys. Rev. B64,
195126(2001)[O(N)][TB][Recursion]
- Conical
Intersections : D. R. Yarkony, J. Phys. Chem. A,
105, 6277(2001)[New conventional wisdom][Born-Oppenheimer
separation]
- Pressure-controlled
Tight-Binding Molecular Dynamics : T. Ito, K. Nishidate, M.
Baba and M. Hasegawa, Journal of the Physical Society of Japan,
Vol. 70, No. 9, 2593(2001)[O(N)][TBMD][Nanotube]
- Local spin :
A. E. Clark and E. R. Davidson, J. Chem. Phys., Vol. 115, No. 16,
7382(2001)
- Discrete cellular
method(DCM) : C. M. J. Wijers and P. L. de Boeij, Physica B
305, 220(2001)[Nonlocality][Optics]
- Kinetic energy density
functionals : N. Choly and E. Kaxiras, Solid State
Communications 121, 281(2002)[Non-periodic][O(N)]
- O(N)-like density
functional study : D. Raczkowski and C. Y. Fong,
Phys. Rev. B68, 014116(2003)[Defect]
- Thomas-Fermi
charge mixing : D. Raczkowski, A. Canning and L. W. Wang, Phys.
Rev. B64, 121101(R)(2001)[Self-consistency in DF calculations]
- Robust
mixing : L. D. Marks and D. R. Luke, Phys. Rev. B78,
075114(2008)[Ab initio Quantum mechanical calculations]
- Open quantum
systems : R. Xu and Y. Yan, J. Chem. Phys., Vol. 116, No. 21,
9196(2002)
- Coupled-perturbed
Kohn-Sham DFT : A. Hesselmann and G. Jansen, Chemical Physics
Letters 362, 319(2002)[SAPT][Intermolecular
induction][Exchange-induction]
- Dynamical correlation
function : B. Farid, Philosophical Magazine B, Vol. 82, No. 14,
1413(2002)[Many-particle ground-state wavefunction][Dynamical
self-energy operator]
- Calculation of
polarization : L. L. Boyer, M. J. Mehl and H. T. Stokes,
Phys. Rev. B66, 092106(2002)
- New method of molecular
dynamics : A. I. Landau, J. Chem. Phys., Vol. 117, No. 19,
8607(2002)[Constant pressure][Constant temperature]
- Pressure in case of
periodic boundary conditions : M. J. Louwerse and
E. J. Baerends, Chemical Physics Letters 421, 138(2006)[Virial][MD][
- Floquet-Bloch
Approach : D. F. Martinez, L. E. Reichl and G. A. Luna-Acosta,
Phys. Rev. B66, 174306(2002)[Quasienergy
band][Harmonically][Delta-function chain]
- Renormalized Magnetic
Force Theorem : P. Bruno, Phys. Rev. Lett., Vol. 90, No. 8,
087205(2003)[Exchange interaction parameter][Adiabatic spin-wave
spectra][Ferromagnet]
- Polarons and bipolarons
in polar liquids : G. N. Chuev, M. V. Fedorov and N. Russo,
Phys. Rev. B67, 125103(2003)[DFT]
- Finite-temperature
Anderson problem : J. Li and D. A. Drabold,
Phys. Rev. B68, 033103(2003)[Electron hopping][Localized state]
- Hellmann-Feynman
theorem : O. E. Alon and L. S. Cederbaum,
Phys. Rev. B68, 033105(2003)[Degenracy]
- Hellmann-Feynman
theorem : F. Moscardo, Chemical Physics Letters 428,
187(2006)[Universal density functional]
- A new approach to
electron-electron interaction : M. W. C. Dharma-wardana, Solid
State Communications 127, 783(2003)[Strongly correlated
system][Spin-polarization][Temperature]
- General two-body
cluster expansion : E. R. Davidson, Phys. Rev. Lett., Vol. 91,
No. 12, 123001(2003)[Exactness][Many-body quantum theory]
- S. Ronen, Phys. Rev. Lett., Vol. 91, No. 12,
123002(2003)[Many-body Hamiltonian]
- Many-body aspects of
positron annihilation : V. Apaja, S. Denk and E. Krotscheck,
Phys. Rev. B68, 195118(2003)[Electron gas]
- Ab initio
Green's function formalism : C. Buth, U. Birkenheuer,
M. Albrecht and P. Fulde, Phys. Rev. B72, 195107(2005)
- Green's function
formalism : R. Sainidou, N. Stefanou and A. Modinos, Phys. Rev.
B69, 064301(2004)[Photonic crystal]
- Phononic
lattice : M. Sigalas, et. al., Z. Kristallogr. 220,
765(2005)[FDTD]
Vol. 220, 9-10/2005: Phononic Crystals - Sonic Band-Gap Materials,
Edited by I. E. Psarobas
- Electron-phonon
interaction : R. van Leeuwen, Phys. Rev. B69,
115110(2004)[First-principles approach]
- Electron-phonon
interaction : O. Rösch and O. Gunnarsson,
Phys. Rev. Lett., Vol. 93, No. 23, 237001(2004)[Strongly correlated
system]
- Parrinello-Rahman method revisited :
R. Martonk, A. Laio and M. Parrinello, Phys. Rev. Lett., Vol. 90,
No. 7, 075503(2003)[Metadynamics][Predicting]
- History-Dependent
Metadynamics : C. Micheletti, A. Laio and M. Parrinello,
Phys. Rev. Lett., Vol. 92, No. 17,
170601(2004)[Reconstructing][Density of states]
- Nonequilibrium
Metadynamics : G. Bussi, A. Laio and M. Parrinello,
Phys. Rev. Lett., Vol. 96, No. 9, 090601(2006)[Equilibrium free
energy]
- Assessing the
Accuracy : A. Laio, A. Rodriguez-Fortea, F. L. Gervasio,
M. Ceccarelli and M. Parrinello, J. Phys. Chem. B, 109,
6714(2005)[Metadynamics]
- Transformation
pathway : R. Martonak, D. Donadio, A. R. Oganov and
M. Parrinello, Phys. Rev. B76, 014120(2007)[Four- to
six-coordinated silica]
- The Fisher-Shannon
information plane : E. Romera and J. S. Dehesa, J. Chem. Phys.,
Vol. 120, No. 19, 8906(2004)[Electron correlation tool]
- Fisher
information : A. Nagy, Chemical Physics Letters 425,
154(2006)[Two-electron entangled artificial atom]
- Scaled Schrödinger
equation : H. Nakatsuji, Phys. Rev. Lett., Vol. 93, No. 3,
030403(2004)[Exact wave function]
- First-Principles
Statistical Mechanics : K. Reuter, D. Frenkel and M. Scheffler,
Phys. Rev. Lett., Vol. 93, No. 11, 116105(2004)[Steady
state][Heterogeneous catalysis][Ab initio kMC][TST]
- Variational
grand-canonical electronic structure method : S. Jacobi and
R. Baer, J. Chem. Phys., Vol. 123, No. 4, 044112(2005)[Open
system][Optimized effective field][Optimized effective free energy]
- Free energy
space : D. Branduardi, F. L. Gervasio and M. parrinello,
J. Chem. Phys., Vol. 126, No. 5, 054103(2007)[From A to B]
- Do not guarantee the
validity of the adiabatic approximation : D. M. Tong, K. Singh,
L. C. Kwek and C. H. Oh, Phys. Rev. Lett., Vol. 95, No. 11,
110407(2005)[Quantitative condition][Adiabatic theorem]
- Related paper: K. P. Marzlin and B. C. Sanders,
Phys. Rev. Lett., Vol. 93, No. 16, 160408(2004)
- Ab initio
Ehrenfest dynamics : X. Li, J. C. Tully, H. B. Schlegel and
M. J. Frisch, J. Chem. Phys., Vol. 123, No. 8, 084106(2005)
- Interacting Bloch
Electrons : T. Kita and M. Arai, Journal of the Physical
Society of Japan, Vol. 74, No. 10, , 2813(2005)[Magnetic
field][[Magnetic susceptibility][dHvA]
- New
self-consistent-field theory : S. A. Baeurle, G. V. Efimov and
E. A. Nogovitsin, J. Chem. Phys., Vol. 124, No. 22,
224110(2006)[Canonical ensemble]
- Harris density
functional : F. W. Averill and G. S. Painter,
Phys. Rev. B73, 235125(2006)[Self-consistent atom fragment
approximation]
- First-principles
combinatorial design : A. Franceschetti, S. V. Dudiy,
S. V. Barabash and A. Zunger, Phys. Rev. Lett., Vol. 97, No. 4,
047202(2006)[Transition temperature][Multicomponent system]
- Dissipative phenomena
and acoustic phonons : S. Majaniemi and M. Grant,
Phys. Rev. B75, 054301(2007)[Isothermal crystal][DFT study]
- Coupled-Cluster and
Configuration-Interaction Calculation : M. Horoi, et al., Phys.
Rev. Lett., Vol. 98, No. 11, 112501(2007)[Heavy nuclei]
- First-Principles
Quantum Dynamics : P. Deuar and P. D. Drummond,
Phys. Rev. Lett., Vol. 98, No. 12, 120402(2007)[Correlations in a BEC
collision][150000 atoms]
- Yukawa bosons :
K. K. Rajagopal, Phys. Rev. B76, 054519(2007)[2D harmonic
confinement][KS][DFT]
- Simultaneously negative
bulk modulus and mass density : Y. Ding, Z. Liu, C. Qiu and
J. Shi, Phys. Rev. Lett., Vol. 99, No. 9, 093904(2007)[Metamaterial]
- Dirac semimetal in
3D : S. M. Young, S. Zaheer, J. C. Y.Teo, C. L. Kane,
E. J. Mele and A. M. Rappe, Phys. Rev. Lett., Vol. 108, No. 14,
140405(2012)
- Floating electron
states : Y. Matsushita, S. Furuya and A. Oshiyama,
Phys. Rev. Lett., Vol. 108, No. 24, 246404(2012)[Covalent
semiconductor]
- Periodic table up to =<
172 : P. Pyykko, Phys. Chem. Chem. Phys., 13,
161(2011)[Dirac-Fock calculation][Atoms and ions]
- Superheavy
elements : K. Umemoto and S. Saito, Journal of the Physical
Society of Japan, Vol. 65, No. 10, 3175(1996)[Electronic
configuration][g electron][Quantum electrodynamical correction]
- Refined Pareto
Approach : K. Lejaeghere, S. Cottenier and V. V. Speybroeck,
Phys. Rev. Lett., Vol. 111, No. 7, 075501(2013)[VASP][Ranking the
stars][Computational materials design]
- Error Estimates for
Solid-State Density-Functional Theory Prediction :
K. Lejaeghere, V. V, Speybroeck, G. V. Oost and S. Cottenier, Critical
Reviews in Solid State and Materials Sciencies, 39,
1(2014)[Overview][Ground-state elemental crystal]
- Fully Parameter-Free
Calculation of Optical Spectra : J. A. Berger,
Phys. Rev. Lett., Vol. 115, No. 13, 137402(2015)[Simple polarization
functional]
- Dipole and quadrupole
moments of molecules in crystals : A. E. Whitten,
C. J. Radford, J. J. McKinnon and M. A. Spackman,
J. Chem. Phys. Vol. 124, 074106(2006)[Integration over Hirshfeld
surfaces]
- Reproducibility in
density functional theory calculation : Computational Chemistry
Highlights: Thursday, April 14, 2016(Please see references)
(Reference site)Comparing Solid State DFT Codes, Basis Sets and Potentials(Center for Molecular Modeling)
- Collective electronic excitations : P. Cudazzo and L. Wirtz, Phys. Rev. B 104, 125101 (2021)[Charge density wave][CDW][CuTe]
- 2D materials exhibiting charge density waves : S. Chowdhury, H. M. Hill, A. F. Rigosi, P. M. Vora, A. R. H. Walker, F. Tavazza, arXiv:2201.06615[Review][Theoretical and computational methods][Charge density wave]
- Charged periodic systems : M. C. da Silva, et al., Phys. Rev. Lett., 126, 076401 (2021)[Self-consistent potential correction]
- Hermite-Gaussian
smearing : S. de Gironcoli, Phys. Rev. B51,
6773(1995)
- Linear-response
theory : P. Giannozzi, S. de Gironcoli, P. Pavone and S.
Baroni, Phys. Rev. B43, 7231(1991)
- Density-response
function : L. Campillo, J. M. Pitarke and A. G. Eguiluz,
"Electronic stopping power of aluminum crystal", Phys. Rev.
B58, 10307(1998)
- Force-inversion (FI)
technique : Y. Tateyama, T. Ogitsu, K. Kusakabe and S.
Tsuneyuki, Phys. Rev. B54, 14994(1996)
- Critical path
method : K. Kato, J. Phys.: Condens. Matter 5,
6387(1993)
- Coherent-state path
integrals : B. Burghardt, J. Eicke and J. Stolze, J. Chem.
Phys. 108(4), 1562(1998)
- Path integrals at
constant pressure : G. J. Martyna, A. Hughes and M. E.
Tuckerman, J. Chem. Phys., Vol. 110, No. 7, 3275(1999)
- Path integral
simulations of rotors : D. Marx and M. H. Müser,
J. Phys.: Condens. Matter 11, R117(1999)
- Fluxional
symmetric rotor dimers : H. T. Crogman and W. G. Harter, J.
Chem. Phys., Vol. 121, No. 19, 9297(2004)[Frame transformation]
- Path-integral(Composite fermions and
bosons) : P. Beran, Phys. Rev. B59, 9725(1999)
- Nonzero-temperature
path-integral : M. Skorobogatiy and J. D. Joannopoulos,
Phys. Rev. B60, 1433(1999)[Grand canonical][Fermion][Boson]
- Path integral
molecular dynamics : S. Miura and S. Okazaki,
J. Chem. Phys., Vol. 112, No. 23,
10116(2000)[Bose-Einstein][Fermi-Dirac][Statistics]
- Bose-Einstein
condensation : R. Ramakumar and A. N. Das,
Phys. Rev. B72, 094301(2005)[TB band]
- Path Integral Monte
Carlo(PIMC) : B. Militzer and D. M. Ceperley,
Phys. Rev. Lett., Vol. 85, No. 9, 1890(2000)[Shock hugoniot]
- Path Integral Monte
Carlo(PIMC) : S. Weiss and R. Egger, Phys. Rev. B72,
245301(2005)[Interacting few-electron quantum dot][SOC]
- Path Integral MD(ab
initio MO) : M. Shiga, M. Tachikawa and S. Miura, Chemical
Physics Letters 332, 396(2000)
- Fixed-Centroid Path
Integral : T. Lopez-Ciudad and R. Ramirez, J. Chem. Phys.,
Vol. 113, No. 24, 10849(2000)[Spectral decomposition][Bloch equation]
- Path integral
centroid MD : K. Kinugawa, H. Nagao and K. Ohta,
J. Chem. Phys., Vol. 114, No. 4, 1454(2001)[Semiclassical][Many-body
Bose/Fermi systems]
- Fourier Path
Integral(FPI) : S. L. Mielke and D. G. Truhlar,
J. Chem. Phys., Vol. 114, No. 2, 621(2001)[Eight path
integral][Quantum mechanical][Free energy]
- Adiabatic
Linearlized Path Integral(FPI) : M. S. Causo, G. Ciccotti,
D. Montemayor, S. Bonella and D. F. Coker, J. Phys. Chem. B,
109, 6855(2005)[Quantum time correlation function][Electronic
transport]
- Herman-Kluk
propagator : J. C. Burant and V. S. Batista,
J. Chem. Phys., Vol. 116, No. 7, 2748(2002)[Real time][Path intergral]
- Lattice
vibrations : J. R. Chelikowsky and S. G. Louie, Phys. Rev.
B29, 3470(1984), [p3479]
- Anharmonic
vibrational properties : V. Barone, J. Chem. Phys.,
Vol. 122, No. 1, 014108(2005)[Fully automated second-order
perturbative]
- Ewald method
: A. H. Widmann and D. B. Adolf, Computer Physics Communications 107,
187(1997)
- E. Spohr, J. Chem. Phys. 107(16), 6344(1997)
- M. Deserno and C. Holm, J. Chem. Phys., Vol. 109, No. 18,
7678(1998)(I)
- M. Deserno and C. Holm, J. Chem. Phys., Vol. 109, No. 18,
7694(1998)(II)
- Zhong-Hui Duan and R. Krasny, J. Chem. Phys., Vol. 113, No. 9,
3492(2000)[Multipole method]
- F. Hedman and A. Laaksonen, Chemical Physics Letters 425,
142(2006)[Ewald summation][Nonuniform FFT]
- K. Fuchizaki, Journal of the Physical Society of Japan, Vol. 79,
No. 2, 024004(2010)[Generalized Ewald method][Molecular system]
- 2D-Ewald
summation : E. Spohr, J. Chem. Phys. 107(18),
6344(1997)
- 2D Ewald
summation : M. Kawata and M. Mikami, Chemical Physics Letters
340, 157(2001)[Rapid calc.]
- 3D Ewald
summation : M. Kawata and U. Nagashima, Chemical Physics
Letters 340, 165(2001)[Particle mesh][3D system with 2D periodicity]
- Ewald
summation(Slab geometry) : In-Chul Yeh and M. Berkowitz,
J. Chem. Phys., Vol. 111, No. 7, 3155(1999)
- Less expensive
Ewald lattice sum : D. R. Wheeler and J. Newman, Chemical
Physics Letters 366, 537(2002)
- Is the Ewald
summation still necessary? : C. J. Fennell and
J. D. Gezelter, J. Chem. Phys., Vol. 124, No. 23,
234104(2006)[Pairwise alternative][Long-range electrostatics]
- Van
der Hoff-Benson method : V. M. Rozenbaum,
Phys. Rev. B53, 6240(1996)[Coulomb interaction][2D lattce
structure]
- Unit cell for a
lattice electrostatic potential : I. V. Abarenkov,
Phys. Rev. B76, 165127(2007)
- Local Molecular
Dynamics : J. Rottler and A. C. Maggs, Phys. Rev. Lett.,
Vol. 93, No. 17, 170201(2004)[Coulombic interaction]
- New splitting
formulations : P. F. Batcho and T. Schlick, J. Chem. Phys.,
Vol. 115, No. 18, 8312(2001)[Lattice summation]
- Efficient method to
calculate the Coulomb interaction : M. Kawata, M. Mikami
and U. Nagashima, J. Chem. Phys., Vol. 116, No. 8, 3430(2002)[3D
system with 2D periodicity]
- New reciprocal space
based treatment : P. Minary, M. E. Tuckerman,
K. A. Pihakari and G. J. Martyna, J. Chem. Phys., Vol. 116, NO. 13,
5351(2002)[Long range interaction][Surface]
- New iteration
method : W. Zhu, J. Botina and H. Rabitz, J. Chem. Phys.
108(5), 1953(1998)
- Hyperfine
Interactions : H. Akai, M. Akai, S. Bluegel, B. Drittler,
H. Ebert, K. Terakura, R. Zeller and P. H. Dederichs, Progress of
Theoretical Physics Supplement No. 101, 11(1990)
Hyperfine parameters: C. G. Van de Walle and
P. E. Blochl, Phys. Rev. B47, 4244(1993)
Hyperfine parameters: R. H. Luchsinger,
Yu Zhou and P. F. Meier, Phys. Rev. B55, 6927(1997)[Gradient
correction][Semiconductor]
Hyperfine field and relaxation time: H. K. Yoshida, K. Terakura and J. Kanamori, J. Phys. Soc. Jpn. 50(6), 1942(1981)[Systematic variation][Substitutioanl impurity nuclei][Ferromagnetic Fe]
- Virtual Crstal
Approach : A. Zaoui, M. Certier, M. Ferhat, O. Pages and
H. Aourag, phys. stat. sol. (b) 205, 587(1998)
- Dual-space
formalism : J. L. Martins and M. L. Cohen, Phys. Rev.
B37, 6134(1988)
- ab initio FORCE
CONSTANT METHOD : section III, A. Eichler, K.-P. Bohnen,
W. Reichardt and J. Hafner, Phys. Rev. B57, 324(1998)
- Pulay-type formula for
surface stress : P. J. Feibelman, Phys. Rev B44,
3916(1991)
- Stress
correction for slab asymmetry : P. J. Feibelman, Phys. Rev
B72, 153408(2005)[Supercell]
- Nonadiabatic method
: S. H.-Schiffer and J. C. Tully, J. Chem. Phys.
101(6), 4657(1994), M. H.-Gordon and J. C. Tully, J. Chem.
Phys. 96(5), 3939(1992)
- J. R. Schmidt and J. C. Tully, J. Chem. Phys., Vol. 127, No. 9,
094103(2007)[Path-integral][Beyond the adiabatic approximation]
- Non-adiabatic
couplings : K. Ando, Chemical Physics Letters 360,
240(2002)[Liouville][Mixed quantum-classical dynamics]
- Non-adiabatic
coupling terms : M. Baer, Chemical Physics Letters 360,
243(2002)[Gauge transformation]
- General
Born-Oppenheimer-Huang approach : R. Baer, D. J. Kouri, M.
Baer and D. K. Hoffman, J. Chem. Phys., Vol. 119, No. 14, 6998(2003)
- Time-Reversible
Born-Oppenheimer MD : A. M. N. Niklasson, C. J. Tymczak
and M. Challacombe, Phys. Rev. Lett., Vol. 97, No. 12, 123001(2006)
- A. M. N. Kiklasson, C. J. Tymczak and M. Challacombe,
J. Chem. Phys., Vol. 126, No. 14, 144103(2007)[Time-reversible AIMD]
- Non-Born-Oppenheimer
dynamics : M. Joyeux, D. Sugny and M. Lombardi, Chemical
Physics Letters 352, 99(2002)[Local adiabatic representation]
- Non-Born-Oppenheimer : M. Cafiero and
L. Adamowicz, J. Chem. Phys., Vol. 116, No. 13,
5557(2002)[Polarizability][Correlated Gaussian function]
- M. Cafiero, S. Bubin and L. Adamowicz,
Phys. Chem. Chem. Phys., 5, 1491(2003)
- Non-Born-Oppenheimer
trajectories : C. Zhu, A. W. Jasper and D. G. Truhlar,
J. Chem. Phys., Vol. 120, No. 12, 5543(2004)[Self-consistent
decay][Mixing]
- Breakdown of the Born-Oppenheimer approximation : Ville J. Härkönen, arXiv:2311.06114[Solid hydrogen][Hydrogen-rich solids]
- Real-space
implementation of nonlocal pseudopotentials : R. D.
K.-Smith, M. C. Payne and J. S. Lin, Phys. Rev. B44,
13063(1991)
- Nonlocal pseudopotential energy density functional : Q. Xu, C. Ma, W. Mi, Y. Wang, Y. Ma, arXiv:2201.00901[Orbital-free density functional theory]
- Total energy
calculation formula : section III, J. R. Chelikowsky and
S. G. Louie, Phys. Rev. B29, 3470(1984)
- Density of states from
velocity autocorrelation function : Appendix, C. Lee, D.
Vanderbilt, K. Laasonen, R. Car and M. Parrinello, Phys. Rev.
B47, 4863(1993)
- Accelerating the
convergence of force calculations : C. T. Chan, K. P.
Bohnen and K. M. Ho, Phys. Rev. B47, 4771(1993)
- Black-box :
K. N. Kudin, G. E. Scuseria and E. Cances, J. Chem. Phys., Vol. 116,
No. 19, 8255(2002)[Self-consistent field convergence][One step closer]
- Grueneisen
parameter : p14588, S. Wei, C. Li and M. Y. Chou, Phys.
Rev. B50, 14587(1994)
- J. Xie, S. de Gironcoli, S. Baroni and M. Scheffler, Phys. Rev.
B59, 965(1999)[Thermal]
- Preconditioned steepest
descent method : Appendix A and B, N. Chetty, M. Weinert,
T. S. Rahman and J. W. Davenport, Phys. Rev. B52, 6313(1995)
- Ferroelectricity
: R. D. K.-Smith and D. Vanderbilt, Phys. Rev. B49,
5828(1994)
- The fast Fourier
Poisson method : D. York and W. Yang, J. Chem. Phys.
101(4), 3298(1994)
- Poisson's equation
: A. Castro, A. Rubio and M. J. Stott,
Can. J. Phys. 81, 1151(2003)[Finite system][Plane-wave]
- Solution of the
Poisson's equation : R. Hammerling, J. Zabloudil,
L. Szunyogh and P. Weinberger, Philosophical Magazine, Vol. 86,
No. 1, 25(2006)[FP-KKR][Infinite][Semi-infinite][Near field
correction][Charge density of arbitrary shape]
- Efficient and
accurate 3D Poisson solver : L. Genovese, T. Deutsch and
S. Goedecker, J. Chem. Phys., Vol. 127, No. 5, 054704(2007)[Surface
problem]
- Fourier Transform
Coulomb method : J. Baker, L. Füsti-Molnar and
P. Pulay, J. Phys. Chem. A, 108, 3040(2004)[Parallel DFT
energy]
- Linear scaling solution
of the Coulomb problem using wavelets : S. Goedecker and
O. V. Ivanov, Solid State Communications, Vol. 105, No. 11, 665(1998)
- Linear scaling DFT
: G. E. Scuseria, J. Phys. Chem. A, 103,
4782(1999)[Gaussian orbital]
- Linear scaling
electronic-structure scheme : U. Stephan,
Phys. Rev. B62, 16412(2000)[O(N][Nonorthogonal
base][Convergence]
- Linear scaling
electronic structure calculations : F. R. Krajewski and M.
Parrinello, Phys. Rev. B73, 041105(R)(2006)[Accurate
statistical mechanics sampling][Naisy force]
- F. R. Krajewski and M. Parrinello, Phys. Rev. B74,
125107(2006)[Quasi-1D system]
- Linear scaling
electronic structure calculations : E. Tsuchida, Journal
of the Physical Society of Japan, Vol. 76, No. 3,
034708(2007)[Augmented orbital minimization][FEM][FEMTECK]
- Linear-scaling
first-principles MD : J.-L. Fattebert and F. Gygi,
Phys. Rev. B73, 115124(2006)[Plane waves accuracy]
- Linear-scaling
density matrix perturbation treatment : H. J. Xiang,
J. Yang, J. H. Hou and Q. Zhu, Phys. Rev. Lett., Vol. 97, No. 26,
266402(2006)[Electric fields in solids]
- Linear scaling
relaxation : S. Goedecker, F. Lancon and T. Deutcsh, Phys.
Rev. B64, 161102(R)(2001)[Atomic position][Nanostructure]
- Numerical atomic
orbital : J. Junquera, O. Paz, D. Sanchez-Portal and
E. Artacho, Phys. Rev. B64, 235111(2001)[Linear-scaling]
- Numerical atomic
basis orbital : T. Ozaki and H. Kino,
Phys. Rev. B69, 195113(2004)[From H to Kr][O(N)][http://www.openmx-square.org/]
- Efficient projector
expansion : T. Ozaki and H. Kino, Phys. Rev. B72,
045121(2005)[ab initio LCAO method]
- Variationally
optimized atomic orbital : T. Ozaki, Phys. Rev.
B67, 155108(2003)[Large scale]
- Gauge-including
atomic orbital (GIAO): J. Juselius, D. Sundholm and
J. Gauss, J. Chem. Phys., Vol. 121, No. 9, 3952(2004)[Current density]
- Gauge-including
projector augmented-wave method (GIPAW): L. Truflandier,
M. Paris and F. Boucher, Phys. Rev. B76, 035102(2007)[NMR
shielding tensor][Diamagnetic system]
- J. R. Yates, C. J. Pickard and F. Mauri, Phys. Rev. B76,
024401(2007)[GIPAW][NMR chemical shift][Extended system][Ultrasoft
pseudopotential]
- Nuclear
magnetic resonance J-coupling : S. A. Joyce,
J. R. Yates, C. J. Pickard and F. Mauri, J. Chem. Phys., Vol. 127, No.
20, 204107(2007)[NMR][Solid-state system]
- Highly localized
quasiatomic minimal basis orbital(QUAMBO) : W. C. Lu,
C. Z. Wang, T. L. Chan, K. Ruedenberg and K. M. Ho,
Phys. Rev. B70, 041101(2004)
- Block-localized
wavefunction(BLW) : Y. Mo, L. Song and Y. Lin, J. Phys.
Chem. A, 111, 8291(2007)
- Idempotency
purification of density matrices : A. Holas, Chemical
Physics Letters 340, 552(2001)[McWeeny transform][Linear scaling
electronic-structure] base][Convergence]
- Idempotency-conserving iteration scheme
: D. Kohalmi, A. Szabados and P. R. Surjan, Phys. Rev. Lett.,
Vol. 94, No. 13, 013002(20059[One-electron density
matrix][O(N)]
- Precondition
iterative minimization : A. A. Mostofi, P. D. Haynes,
C. Skylaris and M. C. Payne, J. Chem. Phys., Vol. 119, No. 17,
8842(2003)[Linear scaling]
- Systematic generation
of finite-range atomic basis sets : E. Anglada,
J. M. Soler, J. Junquera and E. Artacho, Phys. Rev. B66,
205101(2002)[Linear-scaling]
- Ab initio
linear scaling response theory : V. Weber,
A. M. N. Niklasson and M. Challacombe, Phys. Rev. Lett., Vol. 92,
No. 19, 193002(2004)[Electric polarizability][Perturbed projection]
- Spin-Wave :
Q. Niu and L. Kleinman, "Spin-Wave Dynamics in Real Crystals", Phys.
Rev. Lett., Vol. 80, No. 10, 2205(1998)
- Divide-and-conquer
approach : T. Zhu, W. Pan and W. Yang, Phys. Rev.
B53, 12713(1996), Calculation for solid state structure by
using the embedded-cluster method.
- O. Hod, J. E. Peralta and G. E. Scuseria, J. Chem. Phys.,
Vol. 125, No. 11, 114704(2006)[Electronic transport][Finite elongated
system]
- Divide and conquer
strategy for solving the Schrödinger eq. :
V. Gogonea, L. M. Westerhoff and K. M. Merz, Jr., J. Chem. Phys., Vol.
113, No. 14, 5604(2000)[Large molecular system][Composite
DF-semiempirical Hamiltonian]
- Divide and conquer
interaction energy decomposition : A. van der Vaart
K. M. Merz, Jr., J. Phys. Chem. A, 103, 3321(1999)
- "Fuzzy" atom
: P. Salvador and I. Mayer, J. Chem. Phys., Vol. 120, No. 11,
5046(2004)[Energy partitioning]
- Fuzzy TBMC
('fuzzy' tight-binding Monte Carlo method): M. Krajci and J. Hafner,
Journal of Non-Crystalline Solids, 205-207, 846(1996)
- Transferable
nonorthogonal tight-binding scheme : M. Menon, J. Phys.:
Condens. matter 10, 10991(1998)
- Efficient
ab initio tight-binding-like method : Y. Tu,
S. P. Jacobsson and A. Laaksonen, Phys. Rev. B74, 205104(2006)
- Tight-binding basis
functions : V. M. Tapilin, J. Phys.: Condens. Matter
12, 6773(2000)[Polynomial tail]
- Environment-dependent
tight-binding potential : C. Z. Wang, B. C. Pan and
K. M. Ho, J. Phys.: Condens. Matter 11, 2043(1999)
- Tight-binding
model : Y. Xie and J. A. Blackman, Phys. Rev. B63,
125105(2001)[From cluster to solid][Transition metal]
- Tight-binding
potential : B. C. Pan, Phys. Rev. B64, 155408(2001)
- Why tight-binding
theory? : W. A. Harrison, Solid State Communications 124,
443(2002)
- Block-diaginalization
and f-electron effect : M. D. Jones and
R. C. Albers, Phys. Rev. B66, 134105(2002)[Tight-binding]
- Tight-binding
approach : G. M. Wang, D. A. Papaconstantopoulos and
E. Blaisten-Barojas, Journal of Physics and Chemistry of Solids 64,
185(2003)[Pressure induced transition]
- Harrison's
tight-binding theory : L. Shi and
D. A. Papaconstantopoulos, Phys. Rev. B70, 205101(2004)
- Tight-binding-bond Stoner model :
G. Liu, D. Nguyen-Manh, B. Liu and D. G. Pettifor,
Phys. Rev. B71, 174115(2005)[Magnetic][Point defect]
- Intrasite
Matrix Elements : W. Hayami, Phys. Rev. B70,
233102(2004)[Hamiltonian][TBMD]
- OLCAO
(Orthogonalized linear combination of atomic orbitals method) : F.
Zandiehnadem and W. Y. Ching, Phys. Rev. B41, 12162(1990)
- Scaling hypothesis for
corrections to (stress) : G.-M. Rignanese, Ph. Ghosez,
J.-C. Charlier, J.-P. Michenaud and X. Gonze, Phys. Rev. B52,
8160(1995)
- Finite-difference
time-domain method : D. F. Sievenpiper, E. Yablonovitch,
J. N. Winn, S. Fan, P. R. Villeneuve and J. D. Joannopoulos, Phys.
Rev. Lett., Vol. 80, No. 13, 2829(1998)
- Time-dependent
Lagrangian approach : T. B. Pedersen and H. Koch, J. Chem.
Phys., Vol. 108, No. 13, 5194(1998)
- Pendry's Formula
: p447, M. Potthoff, J. Lachnitt, W. Nolting and J. Braun,
phys. stat. sol. (b) 203, 441(1997)
- Generalized supercell
approach : R. Heid, K.-P. Bohnen and K. M. Ho, Phys. Rev.
B57, 7407(1998)
- Exact
Coulomb cutoff technique : C. A. Rozzi, et. al,,
Phys. Rev. B73, 205119(2006)[Supercell]
- Vector KKR
: Y. Kurokawa, Y. Jimba and H. Miyazaki,
Phys. Rev. B70, 155107(2004)[Internal electric-field
internsity][Monolayer][Periodically arrayed dielectric]
- KKR-DMFT
: J. Minar, et. al., Phys. Rev. B72,
045125(2005)[Multiple-scattering formalism][Correlated system]
- Multiple scattering
theory : D. Sebilleau, Phys. Rev. B61,
14167(2000)[General formalism][layer-KKR][Basis-independent]
- Full-potential
multiple scattering : K. Hatada, K. Hayakawa, M. Benfatto
and C. R. Natoli, Phys. Rev. B76, 060102(R)(2007)[X-ray
spectroscopy]
- Locally self-consistent
multiple scattering CPA (LSMS-CPA[in
Japanese]): J. S. Faulkner, N. Y. Moghadam, Y. Wang and G. M.
Stocks, Phys. Rev. B57, 7653(1998)
- LMTO-CPA
(LMTO-CPA[in Japanese]): N. V. Skorodumova, S. I.
Simak, I. A. Abrikosov, B. Johansson and Y. K. Vekilov, Phys. Rev.
B57, 14673(1998)
- screened-CPA
(scr-CPA[in Japanese]): F. J. Pinski, J. B. Staunton
and D. D. Johnson, Phys. Rev. B57, 15177(1998)
- Blackman-Esterling-Berk CPA (BEB CPA[in
Japanese]): K. Koepernik, B. Velicky, R. Hayn and H. Eschrig,
Phys. Rev. B58, 6944(1998)
- D. B. Balagurov, G. C. La Rocca and V. M. Agranovich, Phys. Rev.
B68, 045418(2003)
- Itinerant CPA
: S. Ghosh, P. L. Leath and M. H. Cohen,
Phys. Rev. B66, 214206(2002)[Phonons in random alloys]
- Dynamical CPA
(CPA[in Japanese]): Y. Kakehashi,
Phys. Rev. B65, 184420(2002)[Magnetism][Correlated electron]
- Y. Kakehashi, Phys. Rev. B66, 104428(2002)[Many-body
CPA][Dyanmical CPA][DMFT]
- M. Takahashi, Phys. Rev. B70, 035207(2004)[Optical band
edge][Dilute magnetic semiconductor]
- A local-field
CPA (CPA[in Japanese]): E. Bruno, L. Zingales and
A. Milici, Phys. Rev. B66, 245107(2002)[Local charge
excess][Metallic alloy]
- Nonlocal CPA
(CPA[in Japanese]): I. V. Solovyev,
Phys. Rev. B67, 014412(2003)[Paramagnetic][Degenerate
double-exchange model]
- The KKR
nonlocal CPA from the dynamical cluster approximation (CPA[in
Japanese]): D. A. Biava, et. al., Phys. Rev. B72,
113105(2005)[Systematic][Multisite][SRO][Corrections][Disordered
alloy]
- Systematically exact integrated
density-of-states Lloyd's formula (KKR-NLCPA[in
Japanese]): S. Ghosh, D. A. Biava, W. A. Shelton and
D. D. Johnson, Phys. Rev. B73, 085106(2006)[Disordered
alloy][SRO]
- Optical
properties of random alloys : K. K. Saha and A. Mookerjee,
Phys. Rev. B70, 134205(2004)
- Random
negative-U Hubbard model : G. Litak and
B. L. Györffy, Phys. Rev. B62, 6629(2000)[CPA(in
Japanese)]
- Beyond the single-site
approximation : M. Borici-kuqo, R. Monnier and V. Drchal,
Phys. Rev. B58, 8355(1998)
- Systematic and casual
corrections : M. Jarrell and H. R. Krishnamurthy,
Phys. Rev. B63, 125102(2001)[CPA]
- Potential-Well
Analogy : Y. Skrypnyk, Phys. Rev. B70,
212201(2004)[Interdependency][Localization parameter][CPA]
- Projection
operator : Y. Kakehashi and P. Fulde,
Phys. Rev. B69, 045101(2004)[CPA]
- Y. Kakehashi and P. Fulde, Phys. Rev. B70,
195102(2004)[Nonlocal excitation spectra][Self-consistent]
- Gaussian-Broadening
method[in Japanese]): Appendix A(p4859), C.
Woodward, B. I. Min, R. Benedek and J. Garner, Phys. Rev. B39,
4853(1989)
- Related paper: O. Grotheer and M. Fahnle, Phys. Rev. B58,
13459(1998)
- Ryckaert method
: J.-P. Ryckaert, G. Ciccotti and H. J. C. Berendsen, JOURNAL
OF COMPUTATIONAL PHYSICS 23, 327(1977)
- Topological
Insulators : L. Fu and C. L. Kane, Phys. Rev. B76,
045302(2007)[Inversion symmetry]
- Tetrahedron
method(in
Japanese): Appendix A(p8922), K. M. Schep, P. J. Kelly and
G. E. W. Bauer, Phys. Rev. B57
- Triangle method
which integrates the surface Brillouin zone as a same way of
tetrahedron method(in Japanese): p4722, O. Pulci, B. Adolph,
U. Grossner and F. Bechstedt, Phys. Rev. B58, 4721(1998),
Please see the reference number of 14(original).
- Brillouin zone
integration [tetrahedron
method]: J. A. O. Bruno, N. L. Allan and T. H. K. Barron,
J. Phys.: Condens. Matter 12, 549(2000)[Simple refinement]
- Brillouin zone
integration [tetrahedron
method]: M. Kawamura, Y. Gohda and S. Tsuneyuki,
Phys. Rev. B89, 094515(2014)[Improved tetrahedron
method][Applicable to response functions][DFPT][Quantum-ESPRESSO]
- Topological
k-space refinement : O. Shchyglo, et. al.,
Phys. Rev. B72, 140201(R)(2005)[Configurational energy][Alloy]
- Linear Tetrahedron
Method : M. Matsumoto, M. Tokii and S. Wakoh, Journal of
the Physical Society of Japan, Vol. 73, No. 7,
1870(2004)[Improvement][Compton profile]
- Finite temperature
linear tetrahedron method : O. V. Yazyev, E. N. Brothers,
K. N. Kudin and G. E. Scuseria, J. Chem. Phys., Vol. 121, No. 6,
2466(2004)[Periodic system][GAUSSIAN]
- Recursive hybrid tetrahedron method : K. Dong, Y. Lin, X. Liu, J. Feng, J. Feng, arXiv:2411.17162[Brillouin-zone integration]
- Electron-temperature
LDA calculation : A. Satta, F. Willaime and S. de
Gironcoli, Phys. Rev. B57, 11184(1998)
- Extended linear
augmented-plane-wave method (ELAPW) : O. V. Krasovska, B.
Winkler, E. E. Krasovskii, V. N. Antonov and B. Yu. Yavorsky, J.
Phys.: Condens. Matter 10, 4093(1998)
- Modification of the
augmented plane wave method (MAPW) : H. Bross,
Phys. Rev. B72, 115109(2005)[Momentum density][Compton profile]
- Boundary
condition : C. Brouder, Phys. Rev. B72,
085118(2005)[APW]
- Linear augmented
cylindrical wave (LACW) : P. N. D'yachkov and D. V. Makaev,
Phys. Rev. B71, 081101(R)(2005)[Embedded carbon nanotube]
- P. N. D'yachkov abd D. V. Makaev, Phys. Rev. B74,
155442(2006)[Double-wall carbon nanotube]
- Energy window augmented plane waves (EWAPW) : G. Goldstein, arXiv:2405.11926
- Film-LAPW
(FLAPW) : I. N. Yakovkin, Surface Science 406, 57(1998),
Film-muffin-tin potential LAPW. Detailed references are [6-8] in this
paper.
- Adiabatic spin
dynamics : S. V. Halilov, H. Eschrig, A. Y. Perlov and P.
M. Oppeneer, Phys. Rev. B58, 293(1998)
- Helical spin-density
theory : Section III(p304), T. Wolenski, M. Grodzicki and
Appel, Phys. Rev. B58, 303(1998)
- Spin Fluctuation
: S. Y. Savrasov, Phys. Rev. Lett., Vol. 81, No. 12, 2570(1998)
- Augmented-space
recursion : B. Sanyal, P. Biswas, A. Mookerjee, H. G.
Salunke, G. P. Das and A. K. Bhattacharyya, J. Phys.: Condens. Matter
10, 5767(1998)
- B. Sanyal and A. Mookerjee, phys. stat. sol. (b) 216,
1009(1999)
- A. Chakrabarti and A. Mookerjee, J. Phys.: Condens. Matter
13, 10149(2001)[Partially disordered]
- Variational
plane-wave : J. M. Perez-Jorda, Phys. Rev. B58,
1230(1998), (References)F. Gygi, Europhys.
Lett. 19, 617(1992), Phys. Rev. B48, 11692(1993)
- Cylindrically averaged
pseudopotential scheme (CAPS): S. Kummel, M. Brack and
P.-G. Reinhard, Phys. Rev. B58, R1774(1998),
(Reference)B. Montag and P.-G. Reinhard, Z. Phys. D33,
265(1995)
- Net charge
: A. Widom, M. S. Tomassone, Y. N. Srivastava and M. Hannout,
Phys. Rev. B62, 16085(2000)[Adsorbed][Metallic surface]
- Mulliken charges,
Lowdin charges and Crystophersen charges : p408, A. B.
Gordienko and A. S. Poplavnoi, phys. stat. sol. (b) 208,
407(1998)
Mulliken overlap population:R. S. Mulliken,
J. Chem. Phys. 23, 1833(1955) [I]
J. Chem. Phys. 23, 1841(1955) [II]
J. Chem. Phys. 23, 2338(1955) [III]
J. Chem. Phys. 23, 2343(1955) [IV]
- Generating charge
densities : Lin-Wang Wang, Phys. Rev. B65,
153410(2002)[Fullerene]
- Self-interaction
error : Y. Zhang and W. Yang, J. Chem. Phys., Vol. 109, No.
7, 2604(1998)
- Mixed Wannier-Bloch
functionals : F. Giustino and A. Pasquarello,
Phys. Rev. Lett., Vol. 96, No. 21, 216403(2006)[Phonon][Periodic
system]
- Wannier-functional-based ab initio
Hartree-Fock approach: A. Shukla, M. Dolg and H. Stoll, Phys. Rev.
B58, 4325(1998)
- Ab initio
Hartree-Fock approach : A. Shukla, Phys. Rev. B60,
4539(1999)[Benchmark]
- Ab initio
Hartree-Fock approach : A. Shukla, Phys. Rev. B61,
13277(2000)[Born effective charge][Wannier]
- Ab initio
Wannier-function-based many-body approach : P. Sony and A.
Shukla, Phys. Rev. B70, 241103(R)(2004)[Born
charge][Crystalline insulator]
- Gauss, Wannier and
ultralocalized functions : P. Zeiner, R. Dirl and B. L.
Davies, Phys. Rev. B58, 7681(1998)
- Construction of
Wannier functions: I. V. Solovyev, Z. V. Pchelkina,
V. I. Anisimov, Phys. Rev. B75, 045110(2007)[Localized
atomic-like orbital]
- Wannier functions
: S. D. Clow and B. R. Johnson, Phys. Rev. B68,
235107(2003)[Wavelet-basis]
- Wannier function
: E. Krüger, Phys. Rev. B59, 13795(1999)
- A. Mizel and M. L. Cohen, Solid State Communications, 113,
189(2000)[Pressure]
- L. He and D. Vanderbilt, Phys. Rev. Lett., Vol. 86, No. 23,
5341(2001)[Exponential decay]
- Ab Initio
Wannier Function Analysis : W. Ku, H. Rosner, W. E. Pickett
and R. T. Scalettar, Phys. Rev. Lett., Vol. 89, No. 16,
167204(2002)[Insulating ferromagnetism]
- Maximally localized
Wannier function : G. Berghold, C. J. Mundy, A. H. Romero,
J. Hutter and M. Parrinello, Phys. Rev. B61, 10040(2000)
- Exponential
Localization of Wannier Function : C. Brouder, et al.,
Phys. Rev. Lett., Vol. 98, No. 4, 046402(2007)[Insulator]
- Well localized
Wannier function : C. M. Zicovich-Wilson, R. Dovesi and
V. R. Saunders, J. Chem. Phys., Vol. 115, No. 21, 9708(2001)[Composite
energy band][LCAO]
- Localization
of Wannier function : U. Birkenheuer and D. Izotov,
Phys. Rev. B71, 125116(2005)[Entangled energy band]
- Maximally localized
Wannier functions : I. Souza, N. Marzari and D. Vanderbilt,
Phys. Rev. B65, 035109(2002)[Maximally localized Wannier
function][Entangled energy band]
- Y. Lee, M. B. Nardelli and N. Marzari, Phys. Rev. Lett.,
Vol. 95, No. 7, 076804(2005)[Band structure][Quantum
conductance][Nanostructure][Functinonalized][Nanotube]
- H. J. Xiang, et. al., J. Chem. Phys., Vol. 124, No. 23,
234108(2006)
- Maximally
localized Generalized Wannier functions : N. Marzari and D.
Vanderbilt, Phys. Rev. B56, 12847(1997)[Composit energy band]
- Partly occupied
Wannier functions : K. S. Thygesen, L. B. Hansen and
K. W. Jacobsen, Phys. Rev. Lett., Vol. 94, No. 2, 026405(2005)
- K. S. Thygesen, L. B. Hansen and K. W. Jacobsen,
Phys. Rev. B72, 125119(2005)[Construction][Application]
- Transition state
method : V. I. Anishimov and A. V. Kozhevnikov,
Phys. Rev. B72, 075125(2005)[Wannier function]
- Wave-function
localization : M. Iannuzzi and M. Parrinello,
Phys. Rev. B66, 155209(2002)[Reciprocal space]
- Entanglement : Z. Huang and
S. Kais, Chemical Physics Letters 413, 1(2005)[Electron-electron
correlation][Quantum chemistry]
- Crystal
Hartree-Fock calculation: Yen-Sheng Su, T. A. Kaplan, S. D. Mahanti
and J. F. Harrison, Phys. Rev. B59, 10521(1999)
- Unscreened
Hartree-Fock : I. Schnell, G. Czycholl and R. C. Albers,
Phys. Rev. B68, 245102(2003)[From ab initio Hamiltonian]
- Spline-augmented plane
wave : G. M. Fehrenbach and G. Schmidt, Phys. Rev.
B55, 6666(1998)
G. M. Fehrenbach and H. Bross, Eur. Phys. J. B9,
37(1999)[Douglas Kroll transformation]
- van der Waals
: E. Hult and A. Kiejna, Surface Science 383, 88(1997)
- Y. Andersson, D. C. Langreth and B. I. Lundqvist, Phys. Rev.
Lett., Vol. 76, No. 1, 102(1996)
- M. B. Nardelli, Solid State Communications, Vol. 97, No. 3,
215(1996)
- J. F. Dobson and B. P. Dinte, Phys. Rev. Lett., Vol. 76, No. 11,
1780(1996)
- J. M. Perez-Jorda, E. San-Fabian and A. J. Perez-Jimenez, J.
Chem. Phys., Vol. 110, No. 4, 1916(1999)
- E. Hult, H. Rydberg, B. I. Lundqvist and D. C. Langreth,
Phys. Rev. B59, 4708(1999)[van der Waals force]
- J. F. Dobson and J. Wang, Phys. Rev. B62,
10038(2000)[Energy-optimized local Exc kernel][Electron gas][van der
Waals force]
- J. F. Dobson and J. Wang, Phys. Rev. Lett., Vol. 82, No. 10,
2123(1999)
- R. Lovett and M. Baus, J. Chem. Phys., Vol. 111, No. 12,
5544(1999)
- A. Milet, T. Korona, R. Moszynski and E. Kochanski,
J. Chem. Phys., Vol. 111, No. 17, 7727(1999)[What can we get from DF
calc.?]
- A. Sanov, J. Faeder, R. Parson and W. C. Lineberger, Chemical
Physics Letters 313, 812(999)[Spin-orbit coupling]
- C. N. Patra and A. Yethiraj, J. Chem. Phys., Vol. 112, No. 3,
1579(2000)[Generalized van der Waals][Nonuniform polymer]
- L. A. Girifalco and M. Hodak, Phys. Rev. B65,
125404(2002)[Van der Waals binding energy]
- M. Kamiya, T. Tsuneda and K. Hirao, J. Chem. Phys., Vol. 117,
No. 13, 6010(2002)
1999)[Spin-orbit coupling]
- C. N. Patra and A. Yethiraj, J. Chem. Phys., Vol. 112, No. 3,
1579(2000)[Generalized van der Waals][Nonuniform polymer]
- L. A. Girifalco and M. Hodak, Phys. Rev. B65,
125404(2002)[Van der Waals binding energy]
- M. Kamiya, T. Tsuneda and K. Hirao, J. Chem. Phys., Vol. 117,
No. 13, 6010(2002)
- H. Rydberg, et. al., Phys. Rev. Lett., Vol. 91, No. 12,
126402(2003)[VdW DF][Layered structure]
- M. Dion, et. al., Phys. Rev. Lett., Vol. 92, No. 24,
246401(2004)[VdW DF][General geometry]
- J. Tao and J. P. Perdew, J. Chem. Phys., Vol. 122, No. 11,
114102(2005)[Test][Nonempirical DF][Short-range part][Rare-gas dimer]
- F. Ortmann, F. Bechstedt and W. G. Schmidt,
Phys. Rev. B73, 205101(2006)[Semiempirical vdW correction]
- E. R. Johnson and A. D. Becke, Chemical Physics Letters 432,
600(2006)[Exchange hole dipole moment][Bio-organic benchmark system]
- Y. J. Dappe, M. A. Basanta, F. Flores and J. Ortega,
Phys. Rev. B74, 205434(2006)[Weak chemical
interaction][[Graphene layer][Intermolecular perturbation theory]
- J. Kleis, B. I. Lundqvist, D. C. Langreth and E. Schröder,
Phys. Rev. B76, 100201(R)(2007)[Towards a working
DFT][Polymer][vdW-DF]
- V. Yannopapas and N. V. Vitanov, Phys. Rev. Lett., Vol. 99,
No. 12, 120406(2007)[vdW forces between macroscopic bodies]
- T. Thonhauser, et al., PHys. Rev. B76,
125112(2007)[Self-consistent potential][Nature of vdW bond]
- E. Ziambaras, et al., Phys. Rev. B76,
155425(2007)[Intercalation][vdW density-functional]
- A. Tkatchenko and M. Scheffler, Phys. Rev. Lett., Vol. 102,
No. 7, 073005(2009)[Accurate molecular vdW][Free-atom reference data]
- Y. Ono, K. Kusakabe and T. Nakayama, Journal of the Physical
Society of Japan, Vol. 79, No. 7, 074701(2010)[TAPP][Van der Waals
interaction][Isolated][Plasmon-Pole approximation]
- S. Grimme, J. Antony, S. Ehrlich and H. Kreig, J. Chem. Phys. 132, 154104(2010)[Parametrization][Dispersion correction][DFT-D][H-Pu]
- S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem. 32, 1456(2011)[Damping function][Dispersion corrected DFT][DFT-D3]
- A. Tkatchenko, R. A. DiStasio, Jr., R. Car and M. Scheffler,
Phys. Rev. Lett., Vol. 108, No. 23, 236402(2012)[Accurate and
efficient method][Many-body vdW]
- M. Obata, M. Nakamura, I. Hamada and T. Oda, Journal of the
Physical Society of Japan, Vol. 82, No. 9, 093701(2013)[Implementation
of vdW][Spin-polarized][Interaction potential]
- M. Obata, M. Nakamura, I. Hamada and T. Oda, Journal of the
Physical Society of Japan, Vol. 84, No. 2, 024715(2015)[Improving the
description][Nonmagnetic and magnetic molecular crystals][vdW DFT]
- K. Berland, D. Chakraborty, T. Thonhauser, Phys. Rev. B 99, 195418 (2019)[arXiv:1905.07757][van der Waals density functional][Corrected C6 coefficient]
- Weak
bonding : T. Todorova and B. Delley, J. Phys. Chem. C, 114,
20523(2010)[Molecular crystal][Test system]
- Dispersion
force : J. F. Dobson, Surface Science 601,
5667(2007)[Unusual feature][Layered and striated nanostructures]
- Variational reaction
path algorithm :P. L. Fast and D. G. Truhlar, J. Chem.
Phys., Vol. 109, No. 10, 3721(1998)
- Feynman-Haken path
algorithm : Q. Chen, Y. Ren, Z. Jiao and K. Wang, Phys.
Rev. B58, 16340(1998)
- Chemical reaction
: P. W. Ayers, R. C. Morrison and R. K. Roy, J. Chem. Phys.,
Vol. 116, No. 20, 8731(2002)[Variational priciples][Condensed
reactivity indices]
- Chemical Reactivity
Theory(CRT) : M. H. Cohen and A. Wasserman,
J. Phys. Chem. A, 111, 2229(2007)[Foundation of CRT]
- Multicanonical
algorithm : B. A. Berg, Int. J. Mod. Phys. C3,
1083(1992),
U. H. E. Hansmann and Y. Okamoto, J. Phys. Soc. Jpn. 63,
3945(1994)
Y. Okamoto and U. H. E. Hansmann, J. Phys. Chem. 99,
11276(1995)
- Sudden
approximation : D. A. Lidar(Humburger), Surface Science 411,
231(1998)
- Formation energy,
chemical potential : C. G. Van de Walle, D. B. Laks, G. F.
Neumark and S. T. Pantelides, Phys. Rev. B47, 9425(1993)
- Genetic algorithm
: F. Starrost, S. Bornholdt, C. Solterbeck and W. Schattke,
Phys. Rev. B53, 12549(1996)[extended Huckel]
J. R. Morris, D. M. Deaven and K. M. Ho, Phys. Rev. B53,
R1740(1996)
K. Esfarjani, K. Shida, K. Ohno and Y. Kawazoe, "Genetic algorithm",
Materia Japan, Vol. 37, No. 10, 893(1998)(in
Japanese)
M. Iwamatsu, J. Chem. Phys., Vol. 112, No. 24, 10976(2000)[Global
geometry optimization][Space-fixed GA]
H. Nakanishi and M. Sugawara, Chemical Physics Letters 327,
429(2000)[Micro-GA][Numerical solution of the Schrödinger eq.]
Y. Ge and J. D. Head, J. Phys. Chem. B, 106,
6997(2002)[Global optimization][Cluster]
C. Zhang, X. Xu, H. Wu and Q. Zhang, Chemical Physics Letters 364,
213(2002)[MD][Geometry optimization]
V. Blum, G. L. W. Hart, M. J. Walorski and A. Zunger,
Phys. Rev. B72, 165113(2005)[Map first-principles
results][Model Hamiltonian][Generalized Ising model]
- Periodic
genetic algorithm: N. L. Abraham and M. I. J. Probert,
Phys. Rev. B73, 224104(2006)[Real-space
representation][Polymorph prediction]
- Adaptive genetic
algorithm: X. Zhao, M. C. Nguyen, W. Y. Zhang, C. Z. Wang,
M. J. Kramer, D. J. Sellmyer, X. Z. Li, F. Zhang, L. Q. Ke,
V. P. Antropov and K. M. Ho, Phys. Rev. Lett., Vol. 112, No. 4,
045502(2014)[Structural complexity][Intermetallic compound]
- Genetic
Programming : D. E. Makarov and H. Metiu, J. Phys. Chem.
A, 104, 8540(2000)[To solve the Schrödinger eq.]
- First-principles
interatomic potential : M. Widom and J. A. Moriarty, Phys.
Rev. B58, 8967(1998)
- Interatomic
potential : L. G. Ferreira, V. Ozolin&scheck; and
A. Zunger, Phys. Rev. B60, 1687(1999)[Unrelaxed LDA]
- Electron Density Model
Functional method : EDMF, V. Kuznetsov, K. Tsai and T.
Turkebaev, J. Phys.: Condens. Matter 10, 8957(1998)
- Core
spin-poralization correction : O. V. Yazyev, I. Tavernelli,
L. Helm and U. Röthlisberger, Phys. Rev. B71,
115110(2005)[PS-based]
- Core polarization
: E. L. Shirley, X. Zhu and S. G. Louie, Phys. Rev. B56,
6648(1997)
- Core-cancellation
functions : N. A. W. Holzwarth and Y. Zeng, Phys. Rev.
B49, 2351(1994)
- Kohn
Penalty-Functional : P. D. Haynes and M. C. Payne, Solid
State Communications, Vol. 108, No. 10, 737(1998), and see references.
P. D. Haynes and M. C. Payne, Phys. Rev. B59,
12173(1999)[Corrected PF][Linear-scaling]
- Introducing
ONETEP : C. Skylaris, P. D. Haynes, A. A. Mostofi and M. C.
Payne, J. Chem. Phys., Vol. 122, No. 8, 084119(2005)[Linear-scaling
DF][Parallel computer]
- Linear scaling
computation of the Fock matrix : C. Kwan and
M. Challacombe, J. Chem. Phys., Vol. 118, No. 20, 9128(2003)[Data
parallel computation][Exchange-correlation matrix]
- Fock matrix
dynamics : P. Pulay and G. Fogarasi, Chemical Physics
Letters 386, 272(2004)
- Slater-Friedel
Screening Correction : G. Abramovici, Solid State
Communications, Vol. 109, No. 4, 253(1999)
- Friedel sum rule and
oscillation : A. Salin, A. Arnau, P. M. Echenique and E.
Zaremba, Phys. Rev. B59, 2537(1999)
- Ab initio
thermoelasticity : C. W. Greeff and J. A. Moriarty, Phys.
Rev. B59, 3427(1999)
- Thermoelastic
: L. Huang, et. al., Phys. Rev. B73, 104203(2006)[Random
alloy]
- High-pressure elasticity :
J. Koppensteiner, A. Tröster and W. Schranz,
Phys. Rev. B74, 014111(2006)[Efficient parametrization]
- Anisotropy of hardness
: A. Simunek, Phys. Rev. B80, 060103(R)(2009)
- Long range
interaction : G. J. Martyna and M. E. Tuckerman, J. Chem.
Phys., Vol. 110, No. 6, 2810(1999)
- The Surface Core Level
Shift (SCLS): E. Pehlke and M. Scheffler, Phys. Rev. Lett.,
Vol. 71, No. 14, 2338(1993)
- Valence bond-DFT
(VB-DFT): W. Wu and S. Shaik, Chemical Physics Letters 301,
37(1999)
- Lattice DFT
: D. Matuszak, G. L. Aranovich and M. D. Donohue,
J. Chem. Phys., Vol. 121, No. 1, 426(2004)[Molecular
diffusion][Ono-Kondo DFT]
- Random-walk
CMS-DFT : A. L. Frischhknecht and J. G. Curro,
J. Chem. Phys., Vol. 121, No. 6, 2788(2004)[Bead-spring][Homopolymer
melt]
- Dynamical DFT
(DDFT): A. J. Archer and R. Evans, J. Chem. Phys., Vol. 121,
No. 9, 4246(2004)[Spinodal decomposition]
- Joint DFT
(JDFT): S. A. Petrosyan, A. A. Rigos and T. A. Arias,
J. Phys. Chem. B, 109, 15436(2005)[Surface chemistry in
solution]
- Density
Functional Theory of Solvation : R. Ramirez and D. Borgis,
J. Phys. Chem. B, 109, 6754(2005)[Implicit solvent model]
- Zero point energy
: A. G. Baboul, L. A. Curtiss and P. C. Redfern,
J. Chem. Phys.,Vol. 110, No. 16, 7650(1999)
- Minimal subspace
residual method: Y. Huang and D. K. Hoffman,
J. Chem. Phys., Vol. 110, No. 17, 8303(1999)
- Sliding
friction: B. N. J. Persson, E. Tosatti, D. Fuhrmann,
G. Witte and Ch. Wöll, Phys. Rev. B59, 11777(1999)
- Electronic
friction: M. Plihal and D. C. Langreth,
Phys. Rev. B60, 5969(1999)[Strong intra-atomic correlation]
- Giant
magnetoresistance(GMR): S. Sanvito, C. J. Lambert,
J. H. Jefferson and A. M. Bratkovsky, Phys. Rev. B59,
11936(1999)[Green function]
- Noncollinear
magnetic: L. Kleinman, Phys. Rev. B59,
3314(1999)
- D. Gontier, Phys. Rev. Let., Vol. 111, No. 15,
153001(2013)[N-representability][Noncollinear spin-polarized
DFT]
- Transverse
Spin Currents: J. Zhang, P. M. Levy, S. Zhang and
V. Antropov, Phys. Rev. Lett., Vol. 93, No. 25,
256602(2004)[Identification][Noncollinear][Magnetic]
- Longer time
steps: J. A. Izaguirre, S. Reich and R. D. Skeel,
J. Chem. Phys., Vol. 110, No. 20, 9853(1999)[MD]
- Three-dimensional
reference interaction site model: A. Kovalenko and
F. Hirata, J. Chem. Phys., Vol. 110, No. 20, 10095(1999)
- Constrained-path Monte
Carlo method: J. Carlson, J. E. Gubernatis, G. Ortiz and S.
Zhang, Phys. Rev. B59, 12788(1999)[Many-fermion system]
- Nanotube
Junction: A. A. Farajian, K. Esfarjani and Y. Kawazoe,
Phys. Rev. Lett., Vol. 82, No. 25, 5084(1999)[SGFM]
- Spin free Dirac
equation: L. Visscher and E. van Lenthe, Chemical Physics
Letters 306, 357(1999)[Spin-orbit]
- (1)Spinfree Dirac
method, (2)Levy-Leblond method, (3)ZORA method:
L. Visscher, J. Chem. Phys., Vol. 113, No. 10,
3996(2000)[Relativistic][Quaternion modified Dirac equation]
- Nonperturbative Matrix Mechanics Approach: Y. Izaki and Y. Fuseya, Phys. Rev. Lett., Vol. 123, No. 15, 156403(2019)[Spin-split Landau Level][g factor][Spin-orbit coupled solid]
- Douglas-Kroll-Hess
transformation: J. C. Boettger, Phys. Rev. B62,
7809(2000)[Two-electron spin-orbit coupling]
- R. Fukuda, M. Hada and H. Nakatsuji, J. Chem. Phys., Vol. 118,
No. 3, 1015(2003)[Quasirelativistic][Magnetic shielding constant]
- Douglas-Kroll-Hess electric field
gradients: R. Mastalerz, G. Barone, R. Lindh and M. Reiher,
J. Chem. Phys., Vol. 127, No. 7, 074105(2007)[Analytic high-order]
- Bulk modulus
(Stress): M. Hebbache, Solid State Communications 110,
559(1999)
- Stress
tensor: K. N. Kudin and G. E. Scuseria,
Phys. Rev. B61, 5141(2000)[Periodic fast multipole method]
- Stress and
elasticity tensors: K. V. Workum, et al., J. Chem. Phys.,
Vol. 125, No. 14, 144506(2006)[Angle-dependent potential]
- Tensor product
expansion: G. Csanyi and T. A. Arias,
Phys. Rev. B61, 7348(2000)[Quntum many-body system]
- Quantum stress
field: C. L. Rogers and A. M. Rappe, Phys. Rev. B65,
224117(2002)[Geometric formulation]
- Bulk moduli and
comparison with experiment: R. Gaudoin and
W. M. C. Foulkes, Phys. Rev. B66, 052104(2002)
- Bulk moduli
determination: E. Ziambaras and E. Schröder,
Phys. Rev. B68, 064112(2003)
- Correcting
overbinding: A. van de Walle and G. Ceder,
Phys. Rev. B59, 14992(1999)[in LDA]
- Zero temperature
phase: G. Oritz, M. Harris and P. Ballone,
Phys. Rev. Lett., Vol. 82, No. 26, 5317(1999)[Electron Gas]
- Gutzwiller wave
function: E. Koch, O. Gunnarsson and R. M. Martin,
Phys. Rev. B59, 15632(1999)[QMC]
- F. Gebhard, Philosophical Magazine, Vol. 86, No. 13-14,
1847(2006)[Correlated electrons][Application]
- Linear combination of
bulk bands method: Lin-Wang Wang and A. Zunger, "Linear
combination of bulk bands method for large-scale electronic structure
calculations on strained nanostructures", Phys. Rev. B59,
15806(1999)[kp][Smooth Cutoff Function:See Appendix]
- Large-scale ab
initio electronic structure calculations: T. Ozaki,
Phys. Rev. B74, 245101(2006)[O(N)][Krylov-subspace method]
- Continued fraction
representation: T. Ozaki, Phys. Rev. B75,
035123(2007)[O(N)][Fermi-Dirac function]
- SLLOD
algorithm: F. Zhang, D. J. Searles, D. J. Evans, J. S. den
T. Hansen and D. J. Isbister, J. Chem. Phys., Vol. 111, No. 1,
18(1999)
- COHP(Crystal
Orbital Hamilton Population) : N. Börnsen, B. Meyer, O. Grotheer
and M. Fähnle, J. Phys.: Condens. Matter 11, L287(1999)
- Relativistic electron
propagator : F. Sökeland, C. Westphal, S. Dreiner and
H. Zacharias, Eur. Phys. J. B9, 577(1999)[Separability]
- Graphical Unitary Group
Approach : S. Yabushita, Z. Zhang and R. M. Pitzer,
J. Phys. Chem. A, 103, 5791(1999)
- Concurrent coupling of
length scales : J. Q. Broughton, F. F. Abraham,
N. Bernstein and E. Kaxiras, Phys. Rev. B60, 2391(1999)[Finite
element][MD][semiempirical TB]
- Spherical
potential : X.-G. Zhang and D. M. C. Nicholson,
Phys. Rev. B60, 4551(1999)[Generalized LDA]
- Phonon-modulated : G. D. Mahan and
L. M. Woods, Phys. Rev. B60, 5276(1999)
- Lippmann-Schwinger
equation : E. O. Emberly and G. Kirczenow, J. Phys.:
Condens. Matter 11, 6911(1999)[Molecular wire]
- MDIIS :
A. Kovalenko and F. Hirata, J. Chem. Phys. 20, 928(1999)
- DIIS convergence
acceleration : S. Sugiki, N. Kurita, Y. Sengoku and
H. Sekino, Chemical Physics Letters 382, 611(2003)[Fragment MO method]
- Direct
optimization : H. Larsen, J. Olsen, P. Jorgensen and
T. Helgaker, J. Chem. Phys., Vol. 115, No. 21,
9685(2001)[Atomic-orbital density matrix][CG][Multilevel
preconditioner]
- Without the
Born-Oppenheimer approximation : Y. Shigeta, H. Nagao,
K. Nishikawa and K. Yamaguchi, J. Chem. Phys., Vol. 111, No. 14,
6171(1999)
- How well do
Car-Parrinello calculations : P. Tangney and S. Scandolo,
J. Chem. Phys., Vol. 116, No. 1, 14(2002)[Born-Oppenheimer surface]
- Fictitious mass
parameter : P. Tangney, J. Chem. Phys., Vol. 124, No. 4,
044111(2006)[Car-Parrinello method]
- Global Minimum
Determination : S. Goedecker, W. Hellmann and T. Lenosky,
Phys. Rev. Lett., Vol. 95, No. 5, 055501(2005)[Born-Oppenheimer
surface][DFT]
- Combined QM/MM ab
initio Car-Parrinello Molecular Dynamics Method :
T. K. Woo, P. Margl, P. E. Blöchl and T. Ziegler,
J. Phys. Chem. A, 106, 1173(2002)[Sampling phase
space][Multiple time step]
- Hybrid Car-Parrinello
Molecular Dynamics Simulation : A. Laio, J. VandeVondele
and U. Rothlisberger, J. Chem. Phys., Vol. 116, No. 16,
6941(2002)[Electrostatic coupling]
- On-the-fly
localization : R. Iftimie, J. W. Thomas and
M. E. Tuckerman, J. Chem. Phys., Vol. 120, No. 5,
2169(2004)[Car-Parrinello MD]
- Lowest-order
constrained variational method(LOCV metho) : B. Skjetne and
E. Ostgaard, J. Phys.: Condens. Matter 11, 8017(1999)
- Fragment MO
method : K. Kitaura, E. Ikeo, T. Asada, T. Nakano and
M. Uebayashi, Chemical Physics Letters 313, 701(1999)
- Ab initio
Path Integral Molecular Dynamics : T. Fujita, H. Watanabe
and S. Tanaka, Journal of the Physical Society of Japan, Vol. 78,
No. 10, 104723(2009)[Fragment MO method][nuclear quantum effect]
- Ab initio Fragment
Orbital Theory (AFOT) : G. P. Das, A. T. Yeates and
D. S. Dudis, Chemical Physics Letters 393, 76(2004)[TPA]
- Molecular
fragments(in DFT): J. L. Gazquez, A. Cedillo, B. Gomez and
A. Vela, J. Phys. Chem. A, 110, 4535(2006)
- Quantum
algorithm(Eigenvalues and Eigenvectors) : D. S. Abrams and
S. Lloyd, Phys. Rev. Lett., Vol. 83, No. 24, 5162(1999)
- Targeting specific
eigenvectors and eigenvalues : A. R. Tackett and M. Di
Ventra, Phys. Rev. B66, 245104(2002)[Arbitrary selection
criteria]
- Element-free Galerkin
method(EFGM) : M. Sugawara, Chemical Physics Letters 314,
522(1999)
- Exact representation of
exp(iqr) : T. B. Boykin, Phys. Rev. B60,
15810(1999)[empirical TB][Electromagnetic]
- Elimination of the
long-range dipole interaction : L. N. Kantorovich,
Phys. Rev. B60, 15476(1999)
- Band
Structure : R. Bijker and A. Frank, Phys. Rev. Lett.,
Vol. 84, No. 3, 420(2000)[Random interaction]
- Self-consistent atomic
deformation(SCAD) : L. L. Boyer, H. T. Stokes and
M. J. Mehl, Phys. Rev. Lett., Vol. 84, No. 4,
709(2000)[Polarization][DF][Localized charge]
- W. N. Mei, L. L. Boyer, M. J. Mehl, M. M. Ossowski and
H. T. Stokes, Phys. Rev. B61, 11425(2000)
- Minimum
orbital-deformation method(MOD) : K. Toyota, M. Ehara and
H. Nakatsuji, Chemical Physics Letters 356,
1(2002)[Singularity][Molecular orbital derivative]
- Self-consistent atomic
deformation method : M. M. Ossowski, L. L. Boyer,
M. J. Mehl and H. T. Stokes, Phys. Rev. B66,
224302(2002)[Lattice dynamics][Elastic]
- Statistical Average of
Orbital Potential(SOAP) : P. R. T. Schipper,
O. V. Gritsenko, S. J. A. van Gisbergen and E. J. Baerends,
J. Chem. Phys., Vol. 112, No. 3, 1344(2000)[(hyper)Polarizability]
- Orbital
Potential : A. Narita and M. Higuchi, Journal of the
Physical Society of Japan, Vol. 75, No. 2, 024301(2006)[Multiplet
theory][Hund's rule][Expression of energy and potential][LSDA]
- Shifted Contour
Auxiliary Field Monte Carlo(SC-AFMC) : R. Baer,
J. Chem. Phys., Vol. 112, No. 4, 1679(2000)[PW][PS]
- Variational Optimized
Numerical Orbital : J. D. Talman, Phys. Rev. Lett.,
Vol. 84, No. 5, 855(2000)[MO-LCAO]
- Two-electron
photoemission : N. Fominykh, J. Henk, J. Berakdar,
P. Bruno, H. Gollisch and R. Feder, Solid State Communications 113,
665(2000)
- Rice
criterion : M. J. Mehl, D. A. Papaconstantopoulos,
N. Kioussis and M. Herbranson, Phys. Rev. B61,
4894(2000)[TB][Stacking fault][Ductility][fcc]
- Berry's
phase : R. Resta, J. Phys.: Condens. Matter 12,
R107(2000)[Molecule][Condensed matter]
- Dynamics of
Berry-phase polarization : I. Souza, J. Iniguez and
D. Vaderbilt, Phys. Rev. B69, 085106(2004)[Time-dependent
electric field]
- Efficient vector
potential method : M. Springborg and B. Kirtman,
J. Chem. Phys., Vol. 126, No. 10, 104107(2007)[Electronic and nuclear
response][Infinite periodic system][Finite electric field]
- Polarization
fluctuations in insulators and metals : R. Resta,
Phys. Rev. Lett., Vol. 96, No. 13, 137601(2006)[New and old theories
merge]
- Self-consistent
first-principles calculation : T. Komine and K. Shiiki,
Phys. Rev. B61, 7378(2000)[Embedded atomic sphere]
- Block bond-order
potential : T. Ozaki, M. Aoki and D. G. Pettifor,
Phys. Rev. B61, 7972(2000)[Momentum-based method]
- Dark exciton
: F. A. Reboredo, A. Franceschetti and A. Zunger,
Phys. Rev. B61, 13073(2000)[Direct Coulomb interaction][Quantum
dot]
- Multiscale
simulation : N. Choly, G. Lu, Weinan E and E. Kaxiras,
Phys. Rev. B71, 094101(2005)[DF-based methodology]
- Multiscale dynamics :
F. Calvo, D. Bonhommeau and P. Parneix, Phys. Rev. Lett., Vol. 99, No.
8, 083401(2007)[Cluster fragmentation]
- Nonequilibrium multiscale computational
model : X. Liu and S. Li, J. Chem. Phys., Vol. 126, No. 12,
124105(2007)
- Real-space
solution : J. Wang and T. L. Beck, J. Chem. Phys.,
Vol. 112, No. 21, 9223(2000)[Multiscale][Kohn-Sham equation]
- Orthonormal real-space
basis sets : Yi Liu, D. A. Yarne and M. E. Tuckerman, Phys.
Rev. B68, 125110(2003)[AIMD][DVR][Simple][Localized]
- Real-space
finite-difference method : P. A. Khomyakov and G. Brocks,
Phys. Rev. B70, 195402(2004)[Conductance calculation]
- Real-space
pseudopotential method : L. Kong, M. L. Tiago and
J. R. Chelikowsky, Phys. Rev. B73, 195118(2006)[Electron
transport][Nanoscale junction]
- Ab Initio Multiple
Spawning : M. Ben-Nun, J. Quenneville and T. J. Martinez,
J. Phys. Chem. A, Vol. 104, No. 22,
5161(2000)[Photochemistry][FP-QMD]
- Can density functional
theory describe multi-reference systems? :
J. Gräfenstein and D. Cremer, Phys. Chem. Chem. Phys.,
2, 2091(2000)
- Gradients in valence
bond theory : F. Dijkstra and J. H. van Lenthe,
J. Chem. Phys., Vol. 113, No. 6, 2100(2000)
- Galitskii-Migdal
formula : B. Holm and F. Aryasetiawan,
Phys. Rev. B62, 4858(2000)[Total energy][Realistic spectral
function]
- Two-particle wave
function: TPWF : H. Wang, Phys. Rev. B62,
13383(2000)[Strongly correlated system]
- Correlated-electron
calculation : Y. Lee, P. R. C. Kent, M. D. Towler,
R. J. Needs and G. Rajagopal, Phys. Rev. B62,
13347(2000)[Semiempirical PS]
- Ideal spin
filter : G. Kirczenow, Phys. Rev. B63,
054422(2001)[Electron transmission][Ordered and disordered interfaces]
- Fukui
function : L. A. Clark, D. E. Ellis and R. Q. Snurr,
J. Chem. Phys., Vol. 114, No. 6, 2580(2001)[Overlap method][Predicting
reactivity][Sterically]
- Slater-Koster
parameters : Ch. E. Lekka, N. I. Papanicolaou,
G. A. Evangelakis and D. A. Papaconstantopoulos, Journal of Physics
and Chemistry of Solids 62, 753(2001)[Transferability]
- Transferability of
the Slater-Koster tight-binding scheme : W. C. Lu,
C. Z. Wang, K. Ruedenberg and K. M. Ho, Phys. Rev. B72,
205123(2005)[Environment-dependent minimal-basis]
- Devonshire
theory : D. Vanderbilt and M. H. Cohen,
Phys. Rev. B63, 094108(2001)[Higher order]
- Dyson-equation
method : H. Ishida and M. I. Trioni, Phys. Rev. B63,
155108(2001)[Embedding][Green's-function][Defect in solid]
- Embedding potential
definition : J. E. Inglesfield, S. Crampin and H. Ishida,
Phys. Rev. B71, 155120(2005)[Channel function]
- Degenerate
spin-multiplet : V. N. Staroverov and E. R. Davidson,
Chemical Physics Letters 340, 142(2001)[DFT][Component]
- Localized
non-orthogonal orbitals : J. J. Mortensen and
M. Parrinello, J. Phys.: Condens. Matter 13, 5731(2001)
- Time-dependent
simulation of conduction : J. K. Tomfohr and O. Sankey,
phys. stat. sol. (b) 226, 115(2001)[Through a molecule]
- Diabatic
state : H. Köppel, J. Gronki and S. Mahapatra,
J. Chem. Phys., Vol. 115, No. 6, 2377(2001[Constrcution
scheme][Regularized]
- Electronic Diabatic
Framework : M. Baer, T. Vertesi, G. J. Halasz and A. Vibok,
J. Phys. Chem. A, 108, 9134(2004)[Quantization][Nonadiabatic
coupling matrix]
- Self-consistent
periodical Anderson model : U. Lundin, I. Sandalov and
O. Eriksson, Phys. rev. B64, 085113(2001)[Poisson equation]
- Poisson
equation : F. R. Manby and P. J. Knowles, Phys. Rev. Lett.,
Vol. 87, No. 16, 163001(2001)[KS Coulomb problem]
- Frozen-core
all-electron orbitals : B. Hetenyi, F. De Angelis,
P. Giannozzi and R. Car, J. Chem. Phys., Vol. 115, No. 13,
5791(2001)[Reconstruction][Pseudo-orbital]
- Adiabatic
connection : A. Savin, F. Colonna and M. Allavena, J. Chem.
Phys., Vol. 115, No. 15, 6827(2001)[Linear response
function][KS][Correlated system]
- Metallic
nanoparticles : P. Johansson, Phys. Rev. B64,
165405(2001)[Light scattering][Disordered overlayer][CPA]
- Density
amplitude : H. Stachowiak, E. Boronski and G. Banach,
Physica B 305, 274(2001)[Distribution of valence electrons][Simple
metal]
- Nudged elastic band
method(NEBM) : G. Henkelman, B. P. Uberuaga and H. Jonsson,
J. Chem. Phys., Vol. 113, No. 22, 9901(2000)[Climbing image][Saddle
point][Minimum energy path]
- Y. Song, R. Malek and N. Mousseau, Phys. Rev. B62,
15680(2000)[optical activation and diffusion path][Perfect event]
- J. Chu, B. L. Trout and B. R. Brooks, J. Chem. Phys., Vol. 119,
No. 24, 12708(2003)[Super-linear minimization]
- Minimum-energy
path : P. Fleurat-Lessard and T. Ziegler, J. Chem. Phys.,
Vol. 123, No. 8, 084101(2005)[Tracing][Free-energy surface]
- Growing string
method : B. Peters, A. Heyden and A. Chakraborty,
J. Phys. Chem., Vol. 120, No. 17, 7877(2004)[Transition state][Nudged
elastic band]
- Long-range
transition state theory : Y. Georgievskii and
S. J. Klippenstein, J. Chem. Phys., Vol. 122, No. 19, 194103(2005)
- Slater-Janak
transition-state model : C. Göransson, W. Olovsson and
I. A. Abrikosov, Phys. Rev. B72, 134203(2005)[Numerical
investigation][Validity][Metallic system][KKR-CPA][ASA]
- Coleman's
algorithm : A. Beste, K. Runge and R. Bartlett, Chemical
Physics Letters 335, 263(2002)[N-representability]
- Charge-density patching
method : Lin-Wang Wang, Phys. Rev. Lett., Vol. 88, No. 25,
256402(2002)[Unconventional Semiconductor binary]
- Band connectivity
resolution : O. V. Yazyev, K. N. Kudin and G. E. Scuseria,
Phys. Rev. B65, 205117(2002)[Efficient algorithm]
- Bessel discrete
variable representation bases : R. G. Littlejohn and
M. Cargo, J. Chem. Phys., Vol. 117, No. 1, 27(2002)
- Airy discrete variable
representation bases : R. G. Littlejohn and M. Cargo,
J. Chem. Phys., Vol. 117, No. 1, 37(2002)
- Benchmark quantum Monte
Carlo : J. C. Grossman, J. Chem. Phys., Vol. 117, No. 4,
1434(2002)
- Electron-phonon
effects : D. Olguin, M. Cardona and A. Cantarero, Solid
State Communications 122, 575(2002)[Direct band
gap][Semiconductor][LCAO]
- Quantum zero-point atomic
motion : E. Cannuccia and A. Marini, Phys. Rev. Lett., Vol.
107, No. 25,
25501(2011)[PWSCF][YAMBO][Optical][Diamond][Trans-polyacetylene]
- Prediagonalized
Davidson scheme : F. Ribeiro, C. Iung and C. Leforestier,
Chemical Physics Letters 362, 199(2002)[Highly excited vibrational
levels]
- KLV Auger
spectra : E. K. Chang and E. L. Shirley,
Phys. Rev. B66, 035106(2002)
- Energy Density
Analysis(EDA) : H. Nakai, Chemical Physics Letters 363,
73(2002)[Kohn-Sham orbital]
- Dielectric function in
a local representation : S. Brodersen, D. Lukas and
W. Schattke, Phys. Rev. B66, 085111(2002)
- Efficient iterative
method : H. F. Wilson, F. Gygi and G. Galli,
Phys. Rev. B78, 113303(2008)[Dielectric matrices]
- 2n+1
theorem : G. Deinzer and D. Strauch, Phys. Rev. B66,
100301(R)(2002)[Raman tensor][DFPT]
- Collisional excitation
using atomi core potential : A. Reyes, D. A. Micha and
K. Runge, Chemical Physics Letters 363, 441(2002)[Dynamics]
- Ab initio X-ray
scattering : M. Krack, A. Gambirasio and M. Rarrinello,
J. Chem. Phys., Vol. 117, No. 20, 9409(2002)[QUICKSTEP][Liquid]
- Concerted variational
strategy : D. Passerone, M. Ceccarelli and M. Parrinello,
J. Chem. Phys., Vol. 118, No. 5, 2025(2003)[Rare event]
- Thermal
transport : I. Paul and G. Kotliar, Phys. Rev. B67,
115131(2003)[Many body TB]
- Extended method of
MD : K. M. Aoki, M. Yoneya and H. Yokoyama, J. Chem. Phys.,
Vol. 118, No. 22, 9926(2003)[Isostress]
- Finite electric
field : H. Fu and L. Bellaiche, Phys. Rev. Lett., Vol. 91,
No. 5, 057601(2003)[First-principles determination][Electromechanical
response]
- Orbital
switching : M. S. Laad, L. Craco and
E. Müller-Hartmann, Phys. Rev. Lett., Vol. 91, No. 15,
156402(2003)[LDA+DMFT(QMC)][First-order insulator-metal
transition][Paramagnetic]
- Optimized surface-slab
excited-state muffin-tin potential : J. Rundgren,
Phys. Rev. B68, 125405(2003)[KKR]
- Slater-Roothaan
method : B. I. Dunlap, J. Phys. Chem. A, 107,
10082(2003)[Analytic][Variational][Xalpha]
- Effective-bond-orbital
model : X. Cartoixa, D. Z.-Y. Ting and T. C. McGill,
Phys. Rev. B68, 235319(2003)[Bulk inversion asymmetry]
- Fluctuation :
D. Reguera and H. Reiss, J. Chem. Phys., Vol. 120, No. 6,
2558(2004)[DFT][Field theory][Nanosystem]
- Fluctuation-dissipation theorem : F.
Furche and T. V. Voorhis, J. Chem. Phys., Vol. 122, No. 16,
164106(2005)[FDT-DFT]
- Nullspace
Approach : C. Wagner, J. Phys. Chem. B, 108,
2425(2004)[Elementary mode][Chemical reaction]
- Cusp
condition : K. Pachucki and J. Komasa, Chemical Physics
Letters 389, 209(2004)[Gaussian basis sets]
- Broken
symmetry : A. Harju, et. al., Phys. Rev. B69,
153101(2004)[DFT]
- Milestoning :
A. K. Faradjian and R. Elber, J. Chem. Phys., Vol. 120, No. 23,
10880(2004)[Computing time scale][Reaction coordinate]
- Adaptive Immune
Optimization Algorithm (AIOA) : X. Shao, L. Cheng and
W. Cai, J. Chem. Phys., Vol. 120, No. 24, 11401(2004)[Energy
minimization]
- The LoProp
approach : L. Gagliardi, R. Lindh and G. Karlström, J.
Chem. Phys., Vol. 121, No. 10, 4494(2004)[Quantum chemical
system][Local]
- Neural
networks : S. Lorenz, A. Gross and M. Scheffler, Chemical
Physics Letters 395, 210(2004)[High-dimensional
PES][Reaction][Surface]
- Extended-Lagrangian
AIMD : J. M. Herbert and M. Head-Gordon, J. Chem. Phys.,
Vol. 121, No. 23,
11542(2004)[Curvy-step][Constraint-free][Atom-centered basis][B-O
trajectory]
- Approximate
factorization of a matrix inverse : A. M. N. Niklasson,
Phys. Rev. B70, 193102(2004)[Iterative refinement]
- Gaussian finite-element
mixed-basis method : S. Yamakawa and S. Hyodo,
Phys. Rev. B71, 035113(2005)
- Galilean invariant
thermostat : S. D. Stoyanov and R. D. Groot,
J. Chem. Phys., Vol. 122, No. 11, 114112(2005)[From MD to
hydrodynamics]
- Efficient 3D
FFT : S. Goedecker, M. Boulet and T. Deutsch, Computer
Physics Communications 154, 105(2003)[Plane wave][Massively
parallel][Multiprocessor nodes]
- Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) Phase
Formation : A. B. Kyker, W. E. Pickett and F. Gygi,
Phys. Rev. B71, 224517(2005)[Fermiology]
- Scissors
implementation : F. Nastos, B. Olejnik, K. Schwarz and
J. E. Sipe, Phys. Rev. B72, 045223(2005)[Length-gauge
formulation][Frequency-dependent nonlinear optical response]
- Rydberg transition
frequencies : A. Wasserman and K. Burke, Phys. Rev. Lett.,
Vol. 95, No. 16, 163006(2005)[LDA]
- First-principles
envelope-function theory : B. A. Foreman,
Phys. Rev. B72, 165345(2005)[Lattice-matched][Heterostructure]
- Electron localization
function : A. Ormeci, H. Rosner, F. R. Wagner, M. Kohout
and Yu Grin, J. Phys. Chem. A, 110,
1100(2006)[FPLO][Full-potential representation][Crystalline material]
- Tetrascale materials
modelling : M. Plummer, et. al., J. Mater. Chem.,
16, 1885(2006)[High performance][HPCx]
- Ab initio
evolutionary techniques : A. R. Oganov and C. W. Glass,
J. Chem. Phys., Vol. 124, No. 24, 244704(2006)[Crystal structure
prediction]
- Evolution-operator
method for DFT : E. R. Hernandez, S. Janecek, M. Kaczmarski
and E. Krotscheck, Phys. Rev. B75, 075108(2007)
- Truncation of periodic
image interactions : S. Ismail-Beigi,
Phys. Rev. B73, 233103(2006)[Confined system]
- Finite-size error in
many-body simulations : S. Chiesa, D. M. Ceperley,
R. M. Martin and M. Holzmann, Phys. Rev. Lett., Vol. 97, No. 7,
076404(2006)[Long-range interaction]
- The work function with
a local basis set : K. Doll, Surface Science 600,
L321(2006)[CRYSTAL]
- Quasicontinuum
method : Weinan E, J. Lu and J. Z. Yang,
Phys. Rev. B74, 214115(2006)[Uniform accuracy]
- Grid-based energy
density analysis : Y. Imamura, A. Takahashi and H. Nakai,
J. Chem. Phys., Vol. 126, No. 3,
034103(2007)[Implementation][Assessment]
- Magnetic
structure : E. Krüger, Phys. Rev. B75,
024408(2007)[Theoretical investigation]
- Adams-Gilbert
approach : O. Danyliv, L. Kantorovich and F. Cora,
Phys. Rev. B76, 045107(2007)[Treating periodic
system][Embedding]
- Fast local-MP2
method : L. Maschio, et al., Phys. Rev. B76,
075101(2007)[Density-fitting][Algorithm]
- T. Shimazaki, T. Kosugi and T. Nakajima, Journal of the Physical
Society of Japan, Vol. 83, No. 5,
054702(2014)[Range-separation][Density-fitting band structure
calculation][Gaussian auxiliary function]
- 0.7 anomaly :
C. Sloggett and O. P. Sushkov, Surface Science 601,
5788(2007)[Hartree-Fock][Quantum dot]
- Band-gap
renormalization : A. Walsh, J. L. F. Da Silva and S. Wei,
Phys. Rev. B78, 075211(2008)[Degenerately doped semiconductor]
- Ground-state-directed
optmization : S. Host, B. Jansik, J. Olsen, P. Jorgensen,
S. Reine and T. Helgaker, Phys. Chem. Chem. Phys., 10,
5344(2008)[Kohn-Sham energy]
- Data mining for
materials : Y. Saad, Da Gao, T. Ngo, S. Bobbitt,
J. R. Chelikowsky and W. Andreoni, Phys. Rev. B85,
104104(2012)[Computational experiment][AB compounds][PCA]
- Structure integration : K. Takeuchi, T. Ishikawa, R. Tanaka and K. Yuge, Materials Transactions, Vol. 57, No. 10, 1667(2016)[Extension of structure integration][Magnetic system]
- Multi-radius Soler-Williams Augmented Plane Wave : Garry Goldstein, arXiv:2403.15954[Multi-radius Soler-Williams Augmented Plane Waves (SAPMR)][Multi-radius Soler-Williams Linearized Augmented Plane Waves (SLAPWMR)]
- A generalized approach for rapid entropy calculation : Qi-Jun Hong, Zi-Kui Liu, arXiv:2403.19872[Liquids and solids]
- FIREBALLS program
package : (Reference)W. Windl,
O. F. Sankey and J. Menendez, Phys. Rev. B57, 2431(1998) : Program
package for tight-binding calculation.
(References)A. A. Demkov,
J. Ortega, O. F. Sankey and M. P. Grumbach, Phys. Rev. B52,
1618(1995)
O. F. Sankey and D. J. Niklewski, Phys. Rev. B40,
3979(1989)
- CRYSTAL
Related page:[CRYSTAL](*)
- QUEST(QUantum Electronic STructure) : (Reference)p9250, M. Berndt, at al., Phys. Rev.
B57, a parallel code based on the linear combination of atomic
orbitals method.
Related: SeqQuest
- FFTW :
Very useful and fast FFT program coded by C language. [FFTW](ver 3.1.2)(Please see the documents.)
- FFTE :
[FFTE](Please see the documents.)
- FINGER :
(Reference)Appendix, S. Poykko, M. J.
Puska and R. M. Nieminen, Phys. Rev. B57, 12174(1998)
FINGER is FINnish General Electron Relaxator code.
[Reference Site]
- DACAPO :
Parallel Car-Parrinello code by Prof. O. H. Nielsen and Dr. Hammer.
[Reference Site][DACAPO(CAMd)]
- CAESAR for Windows:
Band calculation package by using the "extended Huckel method".
(Reference): This package is used in the reference of P. M. Woodward
and T. Vogt, JOURNAL OF SOLID STATE CHEMISTRY 138, 207(1998).
- ECP:
Effective (Core) Potential [Site]
- TANGO-95: P.
P. Olivera, E. M. Patrito and H. Sellers, Surface Science 418,
376(1998), (Reference):E. M. Patrito, P. P. Olivera, H. Sellers, Int.
J. Mol. Struct. (Theochem) 388, 209(1998)
- SIESTA
program: D. Sanchez-Portal, P. Ordejon, E. Artacho and
J. M. Soler, Int. J. Quantum Chem. 65, 453(1997); P. Ordejon,
E. Artacho and J. M. Soler, Phys. Rev. B53, R10441(1996).[Reference
site]
- ProteinDF:
F. Sato, Y. Shigemitsu, I. Okazaki, S. Yahiro, M. Fukue, S. Kozuru and
H. Kashiwagi, Int. J. Quantum Chem. 63, 245(1997)
(Reference):F. Sato, T. Yoshihiro, I. Ikazaki and H. Kashiwagi, Chemical
Physics Letters 310, 523(1999)
- Tight-Binding Molecular Dynamics(TBMD): J. Wilkins at Department of Physics (Ohio state univ.)[TBMD]
- BANDPACKAGE:
N. E. Brener, J. M. Tyler, J. Callaway, D. Bagayoko and G. L. Zho,
Phys. Rev. B61, 16582(2000) and references therein.
- LAUTREC:
L. C. Ciacchi, W. Pompe and A. De Vita, J. Am. Chem. Soc. 123,
7371(2001) and references therein.
- OCTA: OCTA
Project [page]
- No Data
[Start][Japanese][New
paper][To Guide][Top]