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Pseudopotential database has been prepared as for H, Li, B, C, N, O, Na, Mg, Al, Si,
P, Sc, Ti, V,Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn
and Sb. A partial core correction is considered to improve an overestimation of magnetic
moments of transition metals (Fe, Co and Ni). As for prepared pseudopotentials, bulk
properties (lattice constants, bulk moduli, electronic band structures etc.) are checked
and they agree well with other theoretical and experimental results. There are no ghost
bands in present electronic structure calculations using separable forms for non-local parts

of pseudopotential.



1. Introduction

The first-principles molecular dynamics (FPMD) developed originally by Car and
Parrinello[1] is a very powerful tool for performing an optimization of internal coordinates
of atoms in a unit cell and electronic structures. Appearing this method, a dramatic
reduction in storage and computing time is realized. Already, a variety of systems has
been studied by many groups, and many remarkable achievements have been obtained.

A technique of total energy pseudopotential method is generally used in the FPMD. The
basic concept of pseudopotential is a frozen core approximation which assumes that the
electronic states of core electrons are insensitive to the neighboring atomic configuration.
This assumption is valid in many cases of solid state physics. Therefore, avoiding core
electrons and smoothing potentials, it is possible to use a plane wave basis set in the
electronic structure calculation. In addition, it is relatively easy to formulate interatomic
forces or stresses originated from Nielsen and Martin[2] in this approach.

Traditionally, empirical pseudopotentials [3] made in reproducing other (all-electron)
theoretical or experimental results were used. However, such empirical pseudopotentials
have a weak point that calculated pseudo charge densities do not agree with those of the
real atoms even outside the core region.

In 1979, Hamann, Schliiter and Chiang[4] proposed a norm-conserving pseudopotential.
This is constructed to reproduce eigen-values of valence states and norms of wave functions
in all-electron calculations of atoms. A reliability of norm-conserving pseudopotentials is
almost same level as other kinds of the first-principles all-electron calculation (LMTO,
APW) in a variety of cases. Furthermore, Bachelet, Hamann and Schliiter[5] (BHS)
reported a detailed description of making the norm-conserving pseudopotential and tab-
ulated parameters of pseudopotentials fitted by analytic functions. Recently, Rappe, et
al. and Troullier and Martin (TM)[6,7] proposed a new norm-conserving pseudopotential
scheme to overcome a problem, in which a huge number of plane waves is required in the
case of calculating first elements of atoms and transition metals. This is called ’optimized
pseudopotential’.

Using pseudopotentials in the electronic structure calculation, one of the most serious
problems is unphysical ghost bands which appear by using a separable form by Kleinman
and Bylander[8] in order to reduce a cost of the numerical calculation. There is no way
to overcome easily such a problem without any try and error. Although some technical
treatments avoiding ghost bands are given in reports[9,10], it requires a knowledge of the
first-principles calculation and a way of making pseudopotentials. The author thinks that
it is efficient and useful to prepare a database of norm-conserving pseudopotentials as the
other way of approach to solve the above problem. Already, pseudopotentials for over 30
kinds of atoms have been prepared.

In this proceeding, it is described the outline of pseudopotential database and calcula-

tional method of the electronic structure calculation in section II. In section III, results of



accuracy for the database (bulk properties, electronic band structures for transition and

noble metals) are presented. Section IV is devoted to summary of this study.

2. Method of Calculation

2.1 Qutline of pseudopotential database
At present, norm-conserving pseudopotentials for H, Li, B, C, N, O, Na, Mg, Al
Si, P, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd,
In, Sn and Sb are available. Pseudopotentials for Ca, Ga, Ge, Rb and Sr are preparing
and testing. Li, Na, Mg, Al, Si and P are constructed by using the way of BHS[5], the
other is for the optimized pseudopotentials by TM[7]. In this database, it is checked
that there are no ghost bands as a result of the electronic structure calculation for solid
even by using separable forms([8]. As for transition and noble metals, non-local parts of
s, p and d pseudopotentials are used. In this case, a core potential V,,.(r) is used as a
local pseudopotential based on BHS[5]. Parameters of V,,..(r) are appropriately adjusted
to avoid ghost bands in this work. As for the other pseudopotentials(H, Li, Na, B, C,
N, O, Mg, Al, Si, P, In, Sn and Sb), non-local parts are s and p in which the d part of
pseudopotential is treated as a local one. Pseudopotentials for empty states (for examples
4p states of 3d transition metals) are made in a condition of ionic configuration for valence
electrons in the same way of BHS[5]. A scallar relativistic effect is considered to these
pseudopotentials[11]. This effect is important in the case of 4d transition metals.
The name of this database is 'NCPS95’(Norm-Conserving PSeudopotential 1995). Cal-
culated results of bulk properties for transition and noble metals and alloys will be pre-
sented in the next section in detail. With regards to the results of other atoms, another

papers of the author and colleagues are available for references[12,13,14,15].

2.2 Electronic band structure calculation
The present electronic structure calculation is based on the local (spin) density ap-
proximation(L[S]DA)[16,17] in the density functional theory[18,19]. In this study, two
types of local (spin) density approximation for exchange-correlation are used. The elec-
tronic part is optimized by using the steepest descent type of algorithm which is modified
to accelerate a convergence of the total energy[20].
Although the optimization of only the electronic part is performed in this work, if
necessary, it is possible to optimize interatomic coordinates in a unit cell and unit cell
shapes using forces acting on atoms and stresses [2] on unit cell surfaces, respectively, in

this computer code.



3. Results and Discussion

3.1 Bulk properties and electronic band structures of transition and noble metals

Calculated bulk properties and electronic band structures will be presented as for
Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag and Cd. The
bulk properties (equilibrium lattice constants and bulk moduli) are tabulated in Table
I. In this table, results of second column are present work, third is the all-electron band
structure calculation[21] and forth is the experimental data of Kittel[22]. Left values of
every column are equilibrium lattice constants(A), and right ones are bulk moduli(Mbar).
Almost results are calculated in a bec or fcc structure(see Table I). As for only Zn and
Cd, bulk properties and electronic band structures are calculated in a hcp structure, in
which c/a ratios of Kittel[22] are employed. Although the hcp structure is more stable
than the fcc structure in many cases, the fcc structure is adopted in order to compare the
reference data of calculation[21]. In addition, it is difficult to optimize c/a ratios of every
hcp structure because of computer resources, although it is possible to optimize the unit
cell shape (c/a ratio) by using stresses.

In this table, the bulk properties agree with other theoretical and experimental data
within 2~3 % for equilibrium lattice constants and 10~20 % for bulk moduli without
a few exceptions. In the cases of Ti, V, Fe and Pd, disagreement is more than 2% for
equilibrium lattice constants. Particularly, the lattice constant of Fe(paramagnetic) in
this work is 3.9 % shorter than that of experiment. Since the values of bulk moduli
depend tightly on a way of fitting and calculational condition(energy cutoff, a number of
sampling k points, etc), the difference of about 15 ~ 20 % is not so serious.

Conditions of calculation for every case are also shown in table I. The energy cutoff is
usually 81Ry. In a few cases, it is 144Ry(see Table I). A number of sampling k points
are 55 (bcc), 89 (fcc) and 95(hep) in an irreducible first Brillouin zone(BZ). The Wigner
interpolation formula for exchange-correlation[16] in a paramagnetic phase is used.

There are no ghost bands as a result of checking calculated electronic band structures.
Logarithmic derivatives for pseudo and real atomic wave functions in all most cases are
also checked. Agreements of each other are well in almost cases. About a few cases,
although there is no problem in electronic band structures, it is necessary to investigate
a further analysis of calculated results and logarithmic derivatives in future study.

In the next stage, ferromagnetic phases of Fe, Co and Ni are calculated. Recently, some
papers[23,24] suggest that it is necessary to consider a partial core correction (PCC)[25] in
order to improve overestimated values of magnetic moments. With the PCC (Fe, Co and
Ni), calculated results of equilibrium lattice constants, bulk moduli and magnetic moments
are tabulated in Table II. The calculated magnetic moment of Ni without PCC is 0.8up
which is overestimated on the comparison of the other calculated value[21] (0.59up), and
improved with PCC (0.603up). In the paramagnetic phase of Fe, the calculated value

of the equilibrium lattice constant is underestimated in the difference order of 3.9% on



the comparison of the experimental value. On the other hand, the difference order of the
equilibrium lattice constant is improved to 2.3% in the ferromagnetic case. Electronic
band structures for Fe, Co and Ni(ferromagnetic) are shown in Fig. 1 (a),(b) and (c),
respectively. The overall trend of the dispersion curves for above band structures agrees
well with the other theoretical results[21,24].

Calculational conditions are as follows: values of energy cutoff and a number of sampling
k points in an irreducible BZ are 81Ry (for Fe, Co, Ni), 121Ry(for Ni), 55 (for Fe[bcc]) and
89(for Co,Ni[fcc]), respectively. The LSDA formula by Moruzzi, Janak and Williams[17]
is used for Fe, Co and Ni.

It is possible to calculate stresses[2] acting on unit cell surfaces in this code of program.
This lead to an automatic optimization of a unit cell shape under a constant pressure
condition. The difference order of the equilibrium lattice constants from total energies
and stresses is about 0.6% in the case of 81Ry. Calculated values of stresses and total
energies as a function of volume are shown in Fig. 2 for Ni(121Ry, ferromagnetic). It is
found that the agreement with the minimum of total energy and the zero point of stress is
improved within 0.3% for the lattice constant (1.0% for volume). This difference (0.3%)
would be improved in a condition of increasing energy cutoff.

It is necessary to consider a correction term of PCC in the stress calculation. A detailed

formulation of this correction will be presented in Appendix.

3.2 Calculation for alloys (NbMo, CoAl and NiAl)

Alloys of NbMo, CoAl and NiAl are calculated as a CsCl type crystal structure in
order to check accuracy of pseudopotentials (related to transferability). Calculational
conditions are as follows. An energy cutoff is 81Ry, a number of sampling k-points is 84
in an irreducible BZ. Calculated bulk properties (NbMo, CoAl and NiAl) and electronic
band structure (CoAl) are shown in Table I and Fig. 3, respectively. In all cases, they
are treated as paramagnetic. Equilibrium lattice constants agree quite well with other
theoretical and experimental results[26,27]. The agreement of the overall trend of disper-
sion curves between this work and that by the electronic band structure calculation for
CoAl|[26] is quite well.

4. Summary

Database of norm-conserving pseudopotentials for over 30 kinds of atoms has been
constructed. The bulk properties and electronic band structures of them are calculated
and checked accuracy. Calculated results given no ghost bands agree well with other
theoretical and experimental results without a few exceptions.

The purpose of this database is as follows. It is possible to perform the optimization
of electronic, interatomic and unit cell shape structures in a system of an arbitrary com-

bination of atoms in a variety of environments (complex compounds, surfaces, interfaces,



impurities|[defects] and clusters, etc. ), using this database with the first-principles elec-
tronic structure calculation. This procedure will lead to prediction (or creating) of new
materials, or support to synthesize new materials in experiment. Also, it will be possible
to search a new chemical reaction process and solid state characteristics. Therefore, the
final purpose of this study is to design new materials by using this database in the FPMD.
The author expects that using this database is the first step of this purpose.
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Appendix:Derivation of the correction term of stress for PCC

Here, the derivation of the correction term of stress for PCC is described in detail.

The following equation is the starting point in a non-spin polarized case.

0(Qex(G)p(G)) Ip.(G) Oexe(G)
Oe Oe 8¢ (1.1)

where €, is an exchange-correlation energy, p a total charge density, p. a charge density

= Qpeese(G) + €2 exe(G) + Qp(G)

of partial core, 2 a volume, e a distortion and G reciprocal lattice vectors. In this
equation, ()p, is invariant in the lattice distortion €, in which p, is a charge density of
valence electrons p = p, + p..

The third term at the right hand side of equation (1) is derived as follows.
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where p,. is an exchange-correlation potential.

Therefore,
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where
P.(G) = —2GQG3(%) [ p(r)Gr(Gr)yar. (1.8)
The final formula is
5 (26.(@)p(G)
= Qexe(G) — 11xe(G))(Po(G) + pe(G)) + QP (G) (ks (G) — €xc(G))
+ Qexc(G)apé(EG). (1.9)

It is possible to expand this formula in a spin polarized case. The charge density p is
divided p; and p;, and also the exchange-correlation potential !  and pf,.

In the first term of right hand side at above equation, p.. is divided as %(uxﬁ + ,uxci).

The second term is reformulated as the same way,

fixc' (G) + fxt(G)

(The second term) = QP .(G)( 5 2

— 6(G)). (1.10)
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Fig.1. Calculated electronic band structures for Fe, Co and N in ferromagnetic

are plotted at (a), (b) and (c),

respectively. The Ferm |level is indicated by
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Fig. 2. The total energy and
stress of Ni (121Ry,ferromagnetic)
as a function of lattice constants
are plotted. Solid curve is for
the total energy, and dashed curve
for the stress.
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Fig. 3. The dispersion curve for CoAl
alloy. The Ferm level is indicated by
horizontal line. The lattice constant
is 5.41a. u.



Table 1.

conditions (energy cutoff and crystal structure) for transition and noble metals are tabulated. Unit

of lattice constant is A |, bulk modulus Mbar and energy cutoff Ry, respectively. Left values are for
lattice constants and right values for bulk moduli in every column. Numerical values at parentheses
denoted in a unit of % means the difference of order for present values from other theoretical or
experimental results.
respectively, bulk moduli are not calculated.

reference[28].

Calculated bulk properties (equilibrium lattice constants and bulk moduli) and calculational

The values of block for hep Zn and Cd are lattice constants of a and c,
"ASW’ denotes the all-electron calculation (ASW), see

present work MJW Exp
Ti(bce) 3.254 1.183 3.327 (2.2%)
Ti(bcc 3.228 1.152  (pcc) 3.327 (3.0%)
Ti(fcc) 4.064 4.00 (1.6%) 1.16
V(bcce) 2.999 1.833  2.932 (2.3%) 1.64 3.03 (1.0%) 1.619
Cr(bce) 2.812.931  2.805 (0.2%) 2.70  2.88 (2.4%) 1.901
Cu(fcc 81Ry) 3.622 1.62  3.577 (1.3%) 1.55 3.61 (0.3%) 1.37
Cu(fcc 144Ry) 3.64 1.43 3.577 (1.8%) 1.55 3.61 (0.8%) 1.37
Zr(fcc) 4.448 0.954  4.403 (1.0%) 0.94
Nb(bcc) 3.266 1.81 3.281 (0.5%) 1.68 3.3 (0.1%) 1.702
Mo(bcc) 3.144 2.78  3.117 (0.9%) 2.51 3.15 (0.2%) 2.725
Zn(fcc) 3.9210.76  3.837 (2.2%) 0.82
Zn(hcp) (2.66,4.95) (within 1%)
Cd(fcc 81Ry) 4.519 0.506 4.445 (1.7%) 0.461
Cd(fcc 144Ry) 4.507 4.445 (1.4%) 0.461
Cd(hcp 81Ry) (3.032,5.718) (within 1.75%)
Pd(fcc) 3.99 1.7 3.93 (1.6%) 1 3.89 (2.6%) 1.808
Ag(fcc) 4.157 1.04  4.122 (0.8%) 1.02 4.09 (1.6%) 1.007
Sc(fec) 4.499 0.52  4.493 (0.1%) 0.57
Y (fce) 4.896 0.44  4.884 (0.2%) 0.33
Y (fce) 4.880 0.46  4.884 (0.1%) 0.33 (Ef - 7 eV ghost)
Te(fce 3.884 3.26  3.852 (0.8%) 2.93
Fe(bcc 2.759 3.14  2.725 (1.2%) 3.06 2.87 (3.9%) 1.68
Co(fec) 3.453 2.61  3.412 (1.2%) 2.84
Ni(fcce) 3.511 2.28  3.466 (1.3%) 2.20 3.519 (0.2%) 1.86
Ru(fcc) 3.833 3.38  3.810 (0.6%) 2.89
Rh(fcc) 3.867 2.93  3.831 (0.9%) 2.61 3.800 (1.8%) 2.70
NbMo(CsCl)  3.195 2.52 3.203 (0.2%)
CoAl(CsCl) 2.808 1.89  2.805 (0.1%) (1.99) 2.861 (1.6%) 1.62
NiAl(CsCl) 2.8541.64  2.868 (0.5%) (ASW)




Table 2. Calculated bulk properties (equilibrium lattice constants[left], bulk modulijmiddle] and mag-
netic moments[ug,right]) for ferromagnetic Fe, Co and Ni are tabulated. In the case of Ni(81Ry), the
equilibrium lattice constant and bulk modulus are not calculated. The magnetic moment (Ni,81Ry)
is obtained at 3.466 A. 'pec’ indicates considering the partial core correction. The form of table
is the same of Table 1, exception for appending values of magnetic moments. In the column of

experimental results, lattice constants (left) and bulk moduli (right) are only presented.

present work MJW Exp
Fe(bce,pec) 2.805 2.18 2.25 2.789 (0.6%) 2.17 2.15 2.87 (2.3%) 1.683
Co(fcc,pcc) 3.484 2.64 1.61 3.461 (0.7%) 2.40 1.56
Ni(fcc,81Ry) - - 0.8

Ni(fec,81Ry,pec)  3.487 2.35 0.602 3.466 (0.6%) 2.27 0.59 3.52 (0.9%) 1.86
Ni(fce,121Ry,pce) 3.485 2.37 0.603 3.466 (0.6%) 2.27 0.59 3.52 (1.0%) 1.86




